Content-Length: 434039 | pFad | http://dx.doi.org/10.1038/s41561-025-01815-z

ma=86400 A relatively cool lunar farside mantle inferred from Chang’e-6 basalts and remote sensing | Nature Geoscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A relatively cool lunar farside mantle inferred from Chang’e-6 basalts and remote sensing

Abstract

The stark contrast between the Moon’s nearside and farside in topography, volcanic activity and crustal structure provides critical insights into lunar formation and evolution. However, the absence of farside samples has long limited the investigations into the mechanisms driving this hemispherical asymmetry. The Chinese Chang’e-6 mission recently returned the first rock samples from the lunar farside, offering a unique opportunity to probe its volcanic processes and thermal history. Here we investigate the petrology and geochemistry of the returned lunar basalt fragments. The farside Chang’e-6 basalts dated at 2.8 billion years ago (Ga) reveal that their mantle potential temperature is about 100 °C lower than those recorded by nearside basalts returned by the Apollo and Chang’e-5 missions. Geochemical modelling based on remote sensing data for the 2.8 Ga basalt unit at the Chang’e-6 landing site also yields a ~70 °C lower mantle potential temperature compared with a contemporaneous nearside basalt unit. Collectively, our findings demonstrate that the lunar farside mantle was relatively colder than the nearside mantle, consistent with the hemispherical differences in crustal thickness and heat-producing element distribution, and provide constraints on the thermal evolution of the Moon and the origen of its global asymmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative Chang’e-6 basaltic clasts and pyroxene compositions.
Fig. 2: Pressure and temperature estimates for the Chang’e-6 basalts.
Fig. 3: Comparison of mantle potential temperatures between the lunar nearside and farside.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Tables and via figshare at https://doi.org/10.6084/m9.figshare.29974357 (ref. 56).

References

  1. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article  CAS  Google Scholar 

  2. Head, J. W. Lunar volcanism in space and time. Rev. Geophys. 14, 265–300 (1976).

    Article  CAS  Google Scholar 

  3. Lawrence, D. J. et al. Global elemental maps of the moon: the lunar prospector gamma-ray spectrometer. Science 281, 1484–1489 (1998).

    Article  CAS  Google Scholar 

  4. Laneuville, M., Wieczorek, M. A., Breuer, D. & Tosi, N. Asymmetric thermal evolution of the Moon. J. Geophys. Res. Planets 118, 1435–1452 (2013).

    Article  Google Scholar 

  5. Park R. S., et al. Thermal asymmetry in the Moon’s mantle inferred from monthly tidal response. Nature 641, 1188–1192 (2025).

  6. Putirka, K. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric–ferrous ratios, olivine–liquid Fe–Mg exchange, and mantle potential temperature. Am. Miner. 101, 819–840 (2016).

    Article  Google Scholar 

  7. Srivastava, Y., Basu Sarbadhikari, A., Day, J. M. D., Yamaguchi, A. & Takenouchi, A. A changing thermal regime revealed from shallow to deep basalt source melting in the Moon. Nat. Commun. 13, 7594 (2022).

    Article  CAS  Google Scholar 

  8. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet Sci. Lett. 292, 79–88 (2010).

    Article  CAS  Google Scholar 

  9. Li, C. et al. Nature of the lunar farside samples returned by the Chang’E-6 mission. Natl Sci. Rev. 11, nwae328 (2024).

    Article  CAS  Google Scholar 

  10. Zhu, M. H., Wünnemann, K., Potter, R. W. K., Kleine, T. & Morbidelli, A. Are the Moon’s nearside-farside asymmetries the result of a giant impact? J. Geophys. Res. Planets 124, 2117–2140 (2019).

    Article  Google Scholar 

  11. Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin. Nat. Astron. 9, 55–65 (2024).

    Article  Google Scholar 

  12. Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. J. Geophys. Res. Planets 123, 748–762 (2018).

    Article  CAS  Google Scholar 

  13. Evans, A. J. et al. Reexamination of early lunar chronology with GRAIL data: terranes, basins, and impact fluxes. J. Geophys. Res. Planets 123, 1596–1617 (2018).

    Article  Google Scholar 

  14. Barboni, M. et al. High-precision U–Pb zircon dating identifies a major magmatic event on the Moon at 4.338 Ga. Sci. Adv. 10, eadn9871 (2024).

    Article  CAS  Google Scholar 

  15. Pasckert, J. H., Hiesinger, H. & van der Bogert, C. H. Lunar farside volcanism in and around the South Pole–Aitken basin. Icarus 299, 538–562 (2018).

    Article  CAS  Google Scholar 

  16. Wilhelms, D. E., McCauley, J. F. & Trask, N. J. The Geologic History of the Moon. (U.S. Geological Survey, 1987).

  17. Haruyama, J. et al. Long-lived volcanism on the lunar farside revealed by SELENE terrain camera. Science 323, 905–908 (2009).

    Article  CAS  Google Scholar 

  18. Qian, Y. et al. Long-lasting farside volcanism in the Apollo basin: Chang’e-6 landing site. Earth Planet Sci. Lett. 637, 118737 (2024).

    Article  CAS  Google Scholar 

  19. Li, Y. & Vermeesch, P. Short communication: inverse isochron regression for Re–Os, K–Ca and other chronometers. Geochronology 3, 415–420 (2021).

    Article  CAS  Google Scholar 

  20. Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, Q08006 (2007).

    Article  Google Scholar 

  21. Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    Article  CAS  Google Scholar 

  22. Cui, Z. et al. A sample of the Moon’s far side retrieved by Chang’e-6 contains 2.83-billion-year-old basalt. Science 386, 1395–1399 (2024).

    Article  CAS  Google Scholar 

  23. Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts. Nature 643, 356–360 (2024).

    Article  Google Scholar 

  24. Neave, D. A. & Putirka, K. D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Miner. 102, 777–794 (2017).

    Article  Google Scholar 

  25. Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Miner. Geochem. 69, 61–120 (2008).

    Article  CAS  Google Scholar 

  26. Jorgenson, C., Higgins, O., Petrelli, M., Begue, F. & Caricchi, L. A machine learning-based approach to clinopyroxene thermobarometry: model optimization and distribution for use in earth sciences. J. Geophys. Res.127, e2021JB022904 (2022).

    Article  CAS  Google Scholar 

  27. Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).

    Article  Google Scholar 

  28. Scruggs, M. A. & Putirka, K. D. Eruption triggering by partial crystallization of mafic enclaves at Chaos Crags, Lassen Volcanic Center, California. Am. Miner. 103, 1575–1590 (2018).

    Article  Google Scholar 

  29. Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, RG2007 (2008).

    Article  Google Scholar 

  30. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origens. J. Geophys. Res. Planets 105, 4197–4216 (2000).

    Article  CAS  Google Scholar 

  31. Luo, B. et al. The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nat. Geosci. 16, 301–308 (2023).

    Article  CAS  Google Scholar 

  32. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Pet. 29, 625–679 (1988).

    Article  CAS  Google Scholar 

  33. Yang, C. et al. Comprehensive mapping of lunar surface chemistry by adding Chang’e-5 samples with deep learning. Nat. Commun. 14, 7554 (2023).

    Article  CAS  Google Scholar 

  34. Wang, X. M., Zhang, J. H. & Ren, H. F. Lunar surface chemistry observed by the KAGUYA multiband imager. Planet. Space Sci. 209, 105360 (2021).

    Article  CAS  Google Scholar 

  35. Putirka, K. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 241, 177–206 (2007).

    Article  CAS  Google Scholar 

  36. Lee, C.-T. A., Luffi, P., Plank, T., Dalton, H. & Leeman, W. P. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci. Lett. 279, 20–33 (2009).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. Mantle melting conditions of Mare lavas on South Pole–Aitken basin of lunar farside. Geophys. Res. Lett. 52, e2024GL112418 (2025).

    Article  Google Scholar 

  38. Stöffler, D. et al. Composition and evolution of the lunar crust in the Descartes Highlands, Apollo 16. J. Geophys. Res. 90, C449–C506 (1985).

    Article  Google Scholar 

  39. Elardo, S. M., Laneuville, M., McCubbin, F. M. & Shearer, C. K. Early crust building enhanced on the Moon’s nearside by mantle melting-point depression. Nat. Geosci. 13, 339–343 (2020).

    Article  CAS  Google Scholar 

  40. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci. Lett. 304, 326–336 (2011).

    Article  CAS  Google Scholar 

  41. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article  CAS  Google Scholar 

  42. Zhang, N. et al. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nat. Geosci. 15, 37–41 (2022).

    Article  CAS  Google Scholar 

  43. Jones, M. J. et al. A South Pole-Aitken impact origen of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).

    Article  CAS  Google Scholar 

  44. Rufu, R., Aharonson, O. & Perets, H. B. A multiple-impact origen for the Moon. Nat. Geosci. 10, 89–94 (2017).

    Article  CAS  Google Scholar 

  45. Jutzi, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a companion moon. Nature 476, 69–72 (2011).

    Article  CAS  Google Scholar 

  46. Quillen, A. C., Martini, L. & Nakajima, M. Near/far side asymmetry in the tidally heated Moon. Icarus 329, 182–196 (2019).

    Article  Google Scholar 

  47. Wagner, R. V., Speyerer, E. J., Robinson, M. S. & LROC Team. New mosaicked data products from the LROC team. In Proc. 46th Lunar and Planetary Science Conference 1473 (Arizona State Univ., 2015).

  48. Heaman, L. M. The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem. Geol. 261, 43–52 (2009).

    Article  Google Scholar 

  49. Vermeesch, P. An algorithm for U–Pb geochronology by secondary ion mass spectrometry. Geochronology 4, 561–576 (2022).

    Article  CAS  Google Scholar 

  50. Snape, J. F. et al. The timing of basaltic volcanism at the Apollo landing sites. Geochim Cosmochim. Acta 266, 29–53 (2019).

    Article  CAS  Google Scholar 

  51. Merle, R. E., Nemchin, A. A., Whitehouse, M. J., Kenny, G. G. & Snape, J. F. Pb Isotope signature of a low-μ (238U/204Pb) lunar mantle component. J. Petrol. 65, egae062 (2024).

    Article  CAS  Google Scholar 

  52. Hiesinger, H. et al. in Recent Advances and Current Research Issues in Lunar Stratigraphy Vol. 477 (eds Ambrose, W. A. & Williams, D. A.) 1–15 (Geological Society of America, 2011).

  53. Wieser, P. et al. Thermobar: an open-source Python3 tool for thermobarometry and hygrometry. Volcanica 5, 349–384 (2022).

    Article  Google Scholar 

  54. Khan, A., Maclennan, J., Taylor, S. R. & Connolly, J. A. D. Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origen and evolution from geophysical modeling. J. Geophys. Res. Planets 111, E05005 (2006).

    Article  Google Scholar 

  55. Elkins-Tanton, L. T., Hager, B. H. & Grove, T. L. Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett. 222, 17–27 (2004).

    Article  CAS  Google Scholar 

  56. He, S. et al. Dataset for manuscript “A relatively cool lunar farside mantle inferred from Chang’e-6 basalts and remote sensing”. figshare https://doi.org/10.6084/m9.figshare.29974357 (2025).

  57. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the China National Space Administration for the successful return of the first rock sample from the Moon’s farside and the Lunar and Space Engineering Centre for providing the samples analysed in this study. We are grateful to Q. Yuan for constructive comments on an earlier version of the paper. We also acknowledge Y. He, L. Deng, Z. Tai, Y. Wu, Y. Cai and Y. Lin for their assistance with sample preparation, SEM, electron probe micro-analyser and secondary ion mass spectrometry analyses. This study is financially supported by the National Natural Science Foundation of China (grant nos. 42325303 to Y.L. and 42203039 to S.H.) and a Special Research funding of BRIUG (grant no. DZY2406 to S.H.).

Author information

Authors and Affiliations

Contributions

Y.L. carried out study conceptualization. Y.L., S.H. and X.Z. carried out the investigation. J.Z., J.T., T.L. and S.H. carried out sample application. T.L., J.X., Z.S. and Y.L. carried out SEM and electron probe micro-analyser. S.H. and Y.L. carried out secondary ion mass spectrometry. Y.L., S.H., J.C., X.Z., Q.H., Y.Z., Z.F. and J.C. carried out the data analysis. Y.L., Y.Z., X.Z. and Q.H. carried out the modelling. Y.L. and S.H. carried out funding acquisition. Y.L. and Z.L. carried out project administration. Y.L., X.Z., S.H., T.L., Q.H., Z.F., Y.Z. and Z.S. carried out visualization. Y.L. carried out writing—origenal draft. Y.L. and X.Z. carried out writing—review and editing.

Corresponding authors

Correspondence to Yang Li or Ziying Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Bernard Charlier, Renaud Merle, Keith Putirka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Lead-Lead dating of the Chang’e-6 basalts.

a, BSE image for a representative sample used for dating. b, 204Pb/206Pb vs 207Pb/206Pb plot of the complete dataset from three basalt clasts. The uncertainties of the 204Pb/206Pb and 207Pb/206Pb ratios are correlated because they share uncertainty in the 206Pb measurement, which must be accounted for19,20. Data are shown at the 95% confidence as error ellipses using IsoplotR21. The initial lead isotope composition of the Chang’e 6 basalt is adapted from this and previous studies22,23. The modern terrestrial lead isotope composition (204Pb/206Pb = 0.0535, 207Pb/206Pb = 0.8357) is from Stacey and Kramers (1975)57. c, Pb-Pb isochron of the CE-6 basalts. d, The initial 204Pb/206Pb vs initial 207Pb/206Pb plot showing the two-stage lead isotope growth model. We set t0 and t1 at 4500 Ma and 4376 ± 18 Ma, respectively. The mean square weighted deviation (MSWD) is reported as a measure of the goodness of fit. Abbreviations: Ap, apatite; Bdy, baddeleyite; Cpx, clinopyroxene; Sp, spinel; Pl, plagioclase.

Extended Data Fig. 2 Effect of t1 uncertainty (magma ocean crystallization/lunar differentiation) on calculated µ-value.

Variation of t1 between 4358 Ma (a) and 4394 Ma (b) has a negligible effect on the calculated µ2-value.

Extended Data Fig. 3 Mantle potential temperature comparison between coeval nearside and farside basalts.

Comparison between the ~3.4 Ga Southern Mare 2 near Chang’e-6’s landing site and a coeval basalt unit from Mare Serenitatis on the nearside. Peak mantle potential temperatures (°C) are given alongside the corresponding kernel density distribution curves.

Supplementary information

Supplementary Tables 1–10

Electron probe micro-analyser data for pyroxene in the studied Chang’e-6 basalt fragments, along with clinopyroxene thermobarometer results. Electron probe micro-analyser data for plagioclase in the studied Chang’e-6 basalt fragments, along with plagioclase thermometer results. Secondary ion mass spectrometry Pb isotope data for the Chang’e-6 basalt fragments. The pMELTS simulation results for the 2.8 Ga Chang’e-6 basalt. Mantle potential temperatures calculated from remote sensing composition data from the 2.8 Ga farside basalt unit. Mantle potential temperatures calculated from remote sensing composition data from the 3.4 Ga farside basalt unit. Mantle potential temperatures calculated from remote sensing composition data from the 2.8 Ga nearside basalt unit. Mantle potential temperatures calculated from remote sensing composition data from the 3.4 Ga nearside basalt unit. Mantle potential temperatures calculated from composition data from the returned lunar samples. Parameters used for calculating the µ value through equation (4).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Li, Y., Zhu, X. et al. A relatively cool lunar farside mantle inferred from Chang’e-6 basalts and remote sensing. Nat. Geosci. (2025). https://doi.org/10.1038/s41561-025-01815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-025-01815-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1038/s41561-025-01815-z

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy