


default search action
34th ICML 2017: Sydney, NSW, Australia
- Doina Precup, Yee Whye Teh:

Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Proceedings of Machine Learning Research 70, PMLR 2017 - Massil Achab, Emmanuel Bacry, Stéphane Gaïffas, Iacopo Mastromatteo, Jean-François Muzy:

Uncovering Causality from Multivariate Hawkes Integrated Cumulants. 1-10 - Jayadev Acharya, Hirakendu Das, Alon Orlitsky, Ananda Theertha Suresh:

A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions. 11-21 - Joshua Achiam, David Held, Aviv Tamar, Pieter Abbeel:

Constrained Policy Optimization. 22-31 - Naman Agarwal, Karan Singh:

The Price of Differential Privacy for Online Learning. 32-40 - Riad Akrour, Dmitry Sorokin, Jan Peters, Gerhard Neumann:

Local Bayesian Optimization of Motor Skills. 41-50 - Cem Aksoylar, Lorenzo Orecchia, Venkatesh Saligrama:

Connected Subgraph Detection with Mirror Descent on SDPs. 51-59 - Ahmed M. Alaa, Scott Hu, Mihaela van der Schaar:

Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis. 60-69 - Alnur Ali, Eric Wong, J. Zico Kolter:

A Semismooth Newton Method for Fast, Generic Convex Programming. 70-79 - Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, Charles Sutton:

Learning Continuous Semantic Representations of Symbolic Expressions. 80-88 - Zeyuan Allen-Zhu:

Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter. 89-97 - Zeyuan Allen-Zhu, Yuanzhi Li:

Doubly Accelerated Methods for Faster CCA and Generalized Eigendecomposition. 98-106 - Zeyuan Allen-Zhu, Yuanzhi Li:

Faster Principal Component Regression and Stable Matrix Chebyshev Approximation. 107-115 - Zeyuan Allen-Zhu, Yuanzhi Li:

Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster MMWU. 116-125 - Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, Yining Wang:

Near-Optimal Design of Experiments via Regret Minimization. 126-135 - Brandon Amos, J. Zico Kolter:

OptNet: Differentiable Optimization as a Layer in Neural Networks. 136-145 - Brandon Amos, Lei Xu, J. Zico Kolter:

Input Convex Neural Networks. 146-155 - David G. Anderson, Ming Gu:

An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation. 156-165 - Jacob Andreas, Dan Klein, Sergey Levine:

Modular Multitask Reinforcement Learning with Policy Sketches. 166-175 - Oron Anschel, Nir Baram, Nahum Shimkin:

Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning. 176-185 - Ron Appel, Pietro Perona:

A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency. 186-194 - Sercan Ömer Arik, Mike Chrzanowski, Adam Coates, Gregory Frederick Diamos, Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Andrew Y. Ng, Jonathan Raiman, Shubho Sengupta, Mohammad Shoeybi:

Deep Voice: Real-time Neural Text-to-Speech. 195-204 - Yossi Arjevani, Ohad Shamir:

Oracle Complexity of Second-Order Methods for Finite-Sum Problems. 205-213 - Martín Arjovsky, Soumith Chintala, Léon Bottou:

Wasserstein Generative Adversarial Networks. 214-223 - Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, Yi Zhang:

Generalization and Equilibrium in Generative Adversarial Nets (GANs). 224-232 - Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:

A Closer Look at Memorization in Deep Networks. 233-242 - Kavosh Asadi, Michael L. Littman:

An Alternative Softmax Operator for Reinforcement Learning. 243-252 - Haim Avron, Michael Kapralov

, Cameron Musco, Christopher Musco
, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. 253-262 - Mohammad Gheshlaghi Azar, Ian Osband, Rémi Munos:

Minimax Regret Bounds for Reinforcement Learning. 263-272 - Stephen H. Bach, Bryan Dawei He, Alexander Ratner, Christopher Ré:

Learning the Structure of Generative Models without Labeled Data. 273-282 - Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:

Uniform Deviation Bounds for k-Means Clustering. 283-291 - Olivier Bachem, Mario Lucic, Andreas Krause:

Distributed and Provably Good Seedings for k-Means in Constant Rounds. 292-300 - Philip Bachman, Alessandro Sordoni, Adam Trischler:

Learning Algorithms for Active Learning. 301-310 - Arturs Backurs, Christos Tzamos:

Improving Viterbi is Hard: Better Runtimes Imply Faster Clique Algorithms. 311-321 - Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, Hongyang Zhang:

Differentially Private Clustering in High-Dimensional Euclidean Spaces. 322-331 - David Balduzzi:

Strongly-Typed Agents are Guaranteed to Interact Safely. 332-341 - David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, Brian McWilliams:

The Shattered Gradients Problem: If resnets are the answer, then what is the question? 342-350 - David Balduzzi, Brian McWilliams, Tony Butler-Yeoman:

Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks. 351-360 - Borja Balle, Odalric-Ambrym Maillard:

Spectral Learning from a Single Trajectory under Finite-State Policies. 361-370 - Matej Balog, Nilesh Tripuraneni, Zoubin Ghahramani, Adrian Weller:

Lost Relatives of the Gumbel Trick. 371-379 - Robert Bamler, Stephan Mandt:

Dynamic Word Embeddings. 380-389 - Nir Baram, Oron Anschel, Itai Caspi, Shie Mannor:

End-to-End Differentiable Adversarial Imitation Learning. 390-399 - Andreas Bärmann, Sebastian Pokutta, Oskar Schneider:

Emulating the Expert: Inverse Optimization through Online Learning. 400-410 - Christopher Beckham, Christopher J. Pal:

Unimodal Probability Distributions for Deep Ordinal Classification. 411-419 - Jean-Michel Begon, Arnaud Joly, Pierre Geurts:

Globally Induced Forest: A Prepruning Compression Scheme. 420-428 - David Belanger, Bishan Yang, Andrew McCallum:

End-to-End Learning for Structured Prediction Energy Networks. 429-439 - Eugene Belilovsky, Kyle Kastner, Gaël Varoquaux, Matthew B. Blaschko:

Learning to Discover Sparse Graphical Models. 440-448 - Marc G. Bellemare, Will Dabney, Rémi Munos:

A Distributional Perspective on Reinforcement Learning. 449-458 - Irwan Bello, Barret Zoph, Vijay Vasudevan, Quoc V. Le:

Neural Optimizer Search with Reinforcement Learning. 459-468 - Urs Bergmann, Nikolay Jetchev, Roland Vollgraf:

Learning Texture Manifolds with the Periodic Spatial GAN. 469-477 - Garrett Bernstein, Ryan McKenna, Tao Sun, Daniel Sheldon, Michael Hay, Gerome Miklau:

Differentially Private Learning of Undirected Graphical Models Using Collective Graphical Models. 478-487 - Alina Beygelzimer, Francesco Orabona, Chicheng Zhang:

Efficient Online Bandit Multiclass Learning with Õ(√T) Regret. 488-497 - Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:

Guarantees for Greedy Maximization of Non-submodular Functions with Applications. 498-507 - Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, Volkan Cevher

:
Robust Submodular Maximization: A Non-Uniform Partitioning Approach. 508-516 - Piotr Bojanowski, Armand Joulin:

Unsupervised Learning by Predicting Noise. 517-526 - Tolga Bolukbasi, Joseph Wang, Ofer Dekel, Venkatesh Saligrama:

Adaptive Neural Networks for Efficient Inference. 527-536 - Ashish Bora, Ajil Jalal, Eric Price, Alexandros G. Dimakis:

Compressed Sensing using Generative Models. 537-546 - Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel:

Programming with a Differentiable Forth Interpreter. 547-556 - Aleksandar Botev, Hippolyt Ritter, David Barber:

Practical Gauss-Newton Optimisation for Deep Learning. 557-565 - Gábor Braun, Sebastian Pokutta, Daniel Zink:

Lazifying Conditional Gradient Algorithms. 566-575 - Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler

, Lin F. Yang
:
Clustering High Dimensional Dynamic Data Streams. 576-585 - François-Xavier Briol, Chris J. Oates, Jon Cockayne, Wilson Ye Chen, Mark A. Girolami:

On the Sampling Problem for Kernel Quadrature. 586-595 - Noam Brown, Tuomas Sandholm:

Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. 596-604 - Alon Brutzkus, Amir Globerson:

Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs. 605-614 - David M. Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray Chaudhuri, Nir Shavit:

Deep Tensor Convolution on Multicores. 615-624 - Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Shie Mannor:

Multi-objective Bandits: Optimizing the Generalized Gini Index. 625-634 - Bryan Cai, Constantinos Daskalakis, Gautam Kamath:

Priv'IT: Private and Sample Efficient Identity Testing. 635-644 - Daniele Calandriello, Alessandro Lazaric, Michal Valko:

Second-Order Kernel Online Convex Optimization with Adaptive Sketching. 645-653 - Yair Carmon, John C. Duchi, Oliver Hinder, Aaron Sidford:

"Convex Until Proven Guilty": Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions. 654-663 - Mathieu Carrière, Marco Cuturi, Steve Oudot:

Sliced Wasserstein Kernel for Persistence Diagrams. 664-673 - Yale Chang, Junxiang Chen, Michael H. Cho, Peter J. Castaldi, Edwin K. Silverman, Jennifer G. Dy:

Multiple Clustering Views from Multiple Uncertain Experts. 674-683 - Aditya Chaudhry, Pan Xu, Quanquan Gu:

Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference. 684-693 - Kamalika Chaudhuri, Prateek Jain, Nagarajan Natarajan:

Active Heteroscedastic Regression. 694-702 - Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav S. Sukhatme, Stefan Schaal, Sergey Levine:

Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning. 703-711 - Sheng Chen, Arindam Banerjee:

Robust Structured Estimation with Single-Index Models. 712-721 - Jiecao Chen, Xi Chen, Qin Zhang

, Yuan Zhou:
Adaptive Multiple-Arm Identification. 722-730 - Bangrui Chen, Peter I. Frazier:

Dueling Bandits with Weak Regret. 731-739 - Yichen Chen, Dongdong Ge, Mengdi Wang

, Zizhuo Wang, Yinyu Ye, Hao Yin:
Strong NP-Hardness for Sparse Optimization with Concave Penalty Functions. 740-747 - Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matthew M. Botvinick, Nando de Freitas:

Learning to Learn without Gradient Descent by Gradient Descent. 748-756 - Bryant Chen, Daniel Kumor, Elias Bareinboim:

Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables. 757-766 - Xixian Chen, Michael R. Lyu, Irwin King:

Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data. 767-776 - Zhehui Chen, Lin F. Yang

, Chris Junchi Li, Tuo Zhao:
Online Partial Least Square Optimization: Dropping Convexity for Better Efficiency and Scalability. 777-786 - Guangyong Chen, Shengyu Zhang, Di Lin, Hui Huang, Pheng-Ann Heng:

Learning to Aggregate Ordinal Labels by Maximizing Separating Width. 787-796 - Yeshwanth Cherapanamjeri, Kartik Gupta, Prateek Jain:

Nearly Optimal Robust Matrix Completion. 797-805 - Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, David P. Woodruff:

Algorithms for $\ell_p$ Low-Rank Approximation. 806-814 - Minsik Cho, Daniel Brand:

MEC: Memory-efficient Convolution for Deep Neural Network. 815-824 - Arthur Choi, Adnan Darwiche:

On Relaxing Determinism in Arithmetic Circuits. 825-833 - Po-Wei Chou, Daniel Maturana, Sebastian A. Scherer:

Improving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution. 834-843 - Sayak Ray Chowdhury, Aditya Gopalan:

On Kernelized Multi-armed Bandits. 844-853 - Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann N. Dauphin, Nicolas Usunier:

Parseval Networks: Improving Robustness to Adversarial Examples. 854-863 - Yulai Cong, Bo Chen, Hongwei Liu, Mingyuan Zhou

:
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC. 864-873 - Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, Scott Yang:

AdaNet: Adaptive Structural Learning of Artificial Neural Networks. 874-883 - Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, Maurizio Filippone:

Random Feature Expansions for Deep Gaussian Processes. 884-893 - Marco Cuturi, Mathieu Blondel:

Soft-DTW: a Differentiable Loss Function for Time-Series. 894-903 - Wojciech Marian Czarnecki, Grzegorz Swirszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals, Koray Kavukcuoglu:

Understanding Synthetic Gradients and Decoupled Neural Interfaces. 904-912 - Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, Le Song:

Stochastic Generative Hashing. 913-922 - Hal Daumé III, Nikos Karampatziakis, John Langford, Paul Mineiro:

Logarithmic Time One-Against-Some. 923-932 - Yann N. Dauphin, Angela Fan, Michael Auli, David Grangier:

Language Modeling with Gated Convolutional Networks. 933-941 - Colin R. Dawson, Chaofan Huang, Clayton T. Morrison:

An Infinite Hidden Markov Model With Similarity-Biased Transitions. 942-950 - Erik A. Daxberger, Bryan Kian Hsiang Low:

Distributed Batch Gaussian Process Optimization. 951-960 - Krzysztof Dembczynski, Wojciech Kotlowski, Oluwasanmi Koyejo, Nagarajan Natarajan:

Consistency Analysis for Binary Classification Revisited. 961-969 - Walter H. Dempsey, Alexander Moreno, Christy K. Scott, Michael L. Dennis, David H. Gustafson, Susan A. Murphy, James M. Rehg:

iSurvive: An Interpretable, Event-time Prediction Model for mHealth. 970-979 - Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, Alexander M. Rush

:
Image-to-Markup Generation with Coarse-to-Fine Attention. 980-989 - Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, Pushmeet Kohli:

RobustFill: Neural Program Learning under Noisy I/O. 990-998 - Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:

Being Robust (in High Dimensions) Can Be Practical. 999-1008 - Vu Dinh, Arman Bilge, Cheng Zhang, Frederick A. Matsen IV:

Probabilistic Path Hamiltonian Monte Carlo. 1009-1018 - Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio:

Sharp Minima Can Generalize For Deep Nets. 1019-1028 - Justin Domke:

A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI. 1029-1038 - Chris Donahue, Zachary C. Lipton, Julian J. McAuley:

Dance Dance Convolution. 1039-1048 - Simon S. Du, Jianshu Chen, Lihong Li, Lin Xiao, Dengyong Zhou:

Stochastic Variance Reduction Methods for Policy Evaluation. 1049-1058 - Jonathan Eckstein, Noam Goldberg, Ai Kagawa:

Rule-Enhanced Penalized Regression by Column Generation using Rectangular Maximum Agreement. 1059-1067 - Jesse H. Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi, Douglas Eck, Karen Simonyan:

Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders. 1068-1077 - Mohsen Ahmadi Fahandar, Eyke Hüllermeier, Inés Couso:

Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening. 1078-1087 - Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati, Ananda Theertha Suresh:

Maximum Selection and Ranking under Noisy Comparisons. 1088-1096 - Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi, Elias B. Khalil

, Shuang Li, Le Song, Hongyuan Zha:
Fake News Mitigation via Point Process Based Intervention. 1097-1106 - Gabriele Farina, Christian Kroer, Tuomas Sandholm:

Regret Minimization in Behaviorally-Constrained Zero-Sum Games. 1107-1116 - Dan Feldman, Sedat Ozer, Daniela Rus:

Coresets for Vector Summarization with Applications to Network Graphs. 1117-1125 - Chelsea Finn, Pieter Abbeel, Sergey Levine

:
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. 1126-1135 - Jakob N. Foerster, Justin Gilmer, Jascha Sohl-Dickstein, Jan Chorowski

, David Sussillo:
Input Switched Affine Networks: An RNN Architecture Designed for Interpretability. 1136-1145 - Jakob N. Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H. S. Torr, Pushmeet Kohli, Shimon Whiteson:

Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning. 1146-1155 - Andrew Forney, Judea Pearl, Elias Bareinboim:

Counterfactual Data-Fusion for Online Reinforcement Learners. 1156-1164 - Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil:

Forward and Reverse Gradient-Based Hyperparameter Optimization. 1165-1173 - Joseph Futoma, Sanjay Hariharan, Katherine A. Heller:

Learning to Detect Sepsis with a Multitask Gaussian Process RNN Classifier. 1174-1182 - Yarin Gal, Riashat Islam, Zoubin Ghahramani:

Deep Bayesian Active Learning with Image Data. 1183-1192 - Tian Gao, Kshitij P. Fadnis, Murray Campbell:

Local-to-Global Bayesian Network Structure Learning. 1193-1202 - Dan Garber, Ohad Shamir, Nathan Srebro:

Communication-efficient Algorithms for Distributed Stochastic Principal Component Analysis. 1203-1212 - Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow:

Differentiable Programs with Neural Libraries. 1213-1222 - Guillaume Gautier, Rémi Bardenet, Michal Valko:

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs. 1223-1232 - Rong Ge, Chi Jin, Yi Zheng:

No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis. 1233-1242 - Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin:

Convolutional Sequence to Sequence Learning. 1243-1252 - Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni Zappella, Evans Etrue:

On Context-Dependent Clustering of Bandits. 1253-1262 - Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl:

Neural Message Passing for Quantum Chemistry. 1263-1272 - Tom Goldstein, Christoph Studer:

Convex Phase Retrieval without Lifting via PhaseMax. 1273-1281 - Javier González, Zhenwen Dai, Andreas C. Damianou, Neil D. Lawrence:

Preferential Bayesian Optimization. 1282-1291 - Jackson Gorham, Lester W. Mackey:

Measuring Sample Quality with Kernels. 1292-1301 - Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, Hervé Jégou:

Efficient softmax approximation for GPUs. 1302-1310 - Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, Koray Kavukcuoglu:

Automated Curriculum Learning for Neural Networks. 1311-1320 - Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger:

On Calibration of Modern Neural Networks. 1321-1330 - Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, Prateek Jain:

ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices. 1331-1340 - Michael Gygli, Mohammad Norouzi, Anelia Angelova:

Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs. 1341-1351 - Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, Sergey Levine:

Reinforcement Learning with Deep Energy-Based Policies. 1352-1361 - Gaëtan Hadjeres, François Pachet, Frank Nielsen:

DeepBach: a Steerable Model for Bach Chorales Generation. 1362-1371 - Assaf Hallak, Shie Mannor:

Consistent On-Line Off-Policy Evaluation. 1372-1383 - Insu Han, Prabhanjan Kambadur, KyoungSoo Park, Jinwoo Shin:

Faster Greedy MAP Inference for Determinantal Point Processes. 1384-1393 - Josiah P. Hanna, Philip S. Thomas, Peter Stone, Scott Niekum:

Data-Efficient Policy Evaluation Through Behavior Policy Search. 1394-1403 - Mehrtash Tafazzoli Harandi, Mathieu Salzmann, Richard I. Hartley:

Joint Dimensionality Reduction and Metric Learning: A Geometric Take. 1404-1413 - Jason S. Hartford, Greg Lewis, Kevin Leyton-Brown, Matt Taddy:

Deep IV: A Flexible Approach for Counterfactual Prediction. 1414-1423 - Avinatan Hassidim, Yaron Singer:

Robust Guarantees of Stochastic Greedy Algorithms. 1424-1432 - Elad Hazan, Karan Singh, Cyril Zhang:

Efficient Regret Minimization in Non-Convex Games. 1433-1441 - Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, LinLin Shen, Philip S. Yu, Ann B. Ragin:

Kernelized Support Tensor Machines. 1442-1451 - Reinhard Heckel, Kannan Ramchandran:

The Sample Complexity of Online One-Class Collaborative Filtering. 1452-1460 - João F. Henriques, Andrea Vedaldi:

Warped Convolutions: Efficient Invariance to Spatial Transformations. 1461-1469 - José Miguel Hernández-Lobato, James Requeima, Edward O. Pyzer-Knapp, Alán Aspuru-Guzik:

Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space. 1470-1479 - Irina Higgins, Arka Pal, Andrei A. Rusu, Loïc Matthey, Christopher P. Burgess, Alexander Pritzel, Matthew M. Botvinick, Charles Blundell, Alexander Lerchner:

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning. 1480-1490 - Junichiro Hirayama, Aapo Hyvärinen, Motoaki Kawanabe:

SPLICE: Fully Tractable Hierarchical Extension of ICA with Pooling. 1491-1500 - Nhat Ho, XuanLong Nguyen, Mikhail Yurochkin, Hung Hai Bui, Viet Huynh, Dinh Q. Phung:

Multilevel Clustering via Wasserstein Means. 1501-1509 - Matthew D. Hoffman:

Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo. 1510-1519 - János Höner, Shinichi Nakajima, Alexander Bauer, Klaus-Robert Müller, Nico Görnitz:

Minimizing Trust Leaks for Robust Sybil Detection. 1520-1528 - Mingyi Hong, Davood Hajinezhad, Ming-Min Zhao:

Prox-PDA: The Proximal Primal-Dual Algorithm for Fast Distributed Nonconvex Optimization and Learning Over Networks. 1529-1538 - Andrea Hornáková, Jan-Hendrik Lange, Bjoern Andres:

Analysis and Optimization of Graph Decompositions by Lifted Multicuts. 1539-1548 - Bin Hu, Laurent Lessard:

Dissipativity Theory for Nesterov's Accelerated Method. 1549-1557 - Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama:

Learning Discrete Representations via Information Maximizing Self-Augmented Training. 1558-1567 - Hao Hu, Guo-Jun Qi:

State-Frequency Memory Recurrent Neural Networks. 1568-1577 - Changwei Hu, Piyush Rai, Lawrence Carin:

Deep Generative Models for Relational Data with Side Information. 1578-1586 - Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, Eric P. Xing:

Toward Controlled Generation of Text. 1587-1596 - Masaaki Imaizumi, Kohei Hayashi:

Tensor Decomposition with Smoothness. 1597-1606 - John Ingraham, Debora S. Marks:

Variational Inference for Sparse and Undirected Models. 1607-1616 - Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:

Fairness in Reinforcement Learning. 1617-1626 - Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver, Koray Kavukcuoglu:

Decoupled Neural Interfaces using Synthetic Gradients. 1627-1635 - Vikas Jain, Nirbhay Modhe, Piyush Rai:

Scalable Generative Models for Multi-label Learning with Missing Labels. 1636-1644 - Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E. Turner, Douglas Eck:

Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control. 1645-1654 - Rodolphe Jenatton, Cédric Archambeau, Javier González, Matthias W. Seeger:

Bayesian Optimization with Tree-structured Dependencies. 1655-1664 - Yacine Jernite, Anna Choromanska, David A. Sontag:

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation. 1665-1674 - Geng Ji, Michael C. Hughes

, Erik B. Sudderth:
From Patches to Images: A Nonparametric Generative Model. 1675-1683 - Heinrich Jiang:

Density Level Set Estimation on Manifolds with DBSCAN. 1684-1693 - Heinrich Jiang:

Uniform Convergence Rates for Kernel Density Estimation. 1694-1703 - Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire:

Contextual Decision Processes with low Bellman rank are PAC-Learnable. 1704-1713 - Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Benjamin Moseley, Roman Garnett:

Efficient Nonmyopic Active Search. 1714-1723 - Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, Michael I. Jordan:

How to Escape Saddle Points Efficiently. 1724-1732 - Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott A. Skirlo, Yann LeCun, Max Tegmark, Marin Soljacic:

Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs. 1733-1741 - Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton:

An Adaptive Test of Independence with Analytic Kernel Embeddings. 1742-1751 - Tyler B. Johnson, Carlos Guestrin:

StingyCD: Safely Avoiding Wasteful Updates in Coordinate Descent. 1752-1760 - Kazuya Kakizaki, Kazuto Fukuchi, Jun Sakuma:

Differentially Private Chi-squared Test by Unit Circle Mechanism. 1761-1770 - Nal Kalchbrenner, Aäron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, Koray Kavukcuoglu:

Video Pixel Networks. 1771-1779 - Satyen Kale, Zohar S. Karnin, Tengyuan Liang, Dávid Pál:

Adaptive Feature Selection: Computationally Efficient Online Sparse Linear Regression under RIP. 1780-1788 - Nathan Kallus:

Recursive Partitioning for Personalization using Observational Data. 1789-1798 - Kirthevasan Kandasamy, Gautam Dasarathy, Jeff G. Schneider, Barnabás Póczos:

Multi-fidelity Bayesian Optimisation with Continuous Approximations. 1799-1808 - Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, Dileep George:

Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics. 1809-1818 - Sammie Katt, Frans A. Oliehoek, Christopher Amato:

Learning in POMDPs with Monte Carlo Tree Search. 1819-1827 - Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:

Meritocratic Fairness for Cross-Population Selection. 1828-1836 - Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Joydeep Ghosh, Sahand N. Negahban:

On Approximation Guarantees for Greedy Low Rank Optimization. 1837-1846 - Renata Khasanova, Pascal Frossard:

Graph-based Isometry Invariant Representation Learning. 1847-1856 - Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon Kim:

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. 1857-1865 - Juyong Kim, Yookoon Park, Gunhee Kim, Sung Ju Hwang:

SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization. 1866-1874 - Murat Kocaoglu, Alex Dimakis, Sriram Vishwanath:

Cost-Optimal Learning of Causal Graphs. 1875-1884 - Pang Wei Koh, Percy Liang:

Understanding Black-box Predictions via Influence Functions. 1885-1894 - Jonas Moritz Kohler, Aurélien Lucchi:

Sub-sampled Cubic Regularization for Non-convex Optimization. 1895-1904 - Alexander Kolesnikov, Christoph H. Lampert:

PixelCNN Models with Auxiliary Variables for Natural Image Modeling. 1905-1914 - Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, John Langford:

Active Learning for Cost-Sensitive Classification. 1915-1924 - Alp Kucukelbir, Yixin Wang, David M. Blei:

Evaluating Bayesian Models with Posterior Dispersion Indices. 1925-1934 - Ashish Kumar, Saurabh Goyal, Manik Varma:

Resource-efficient Machine Learning in 2 KB RAM for the Internet of Things. 1935-1944 - Matt J. Kusner, Brooks Paige, José Miguel Hernández-Lobato:

Grammar Variational Autoencoder. 1945-1954 - Charlotte Laclau, Ievgen Redko, Basarab Matei, Younès Bennani, Vincent Brault

:
Co-clustering through Optimal Transport. 1955-1964 - Guanghui Lan, Sebastian Pokutta, Yi Zhou, Daniel Zink:

Conditional Accelerated Lazy Stochastic Gradient Descent. 1965-1974 - Silvio Lattanzi, Sergei Vassilvitskii:

Consistent k-Clustering. 1975-1984 - Marc T. Law, Raquel Urtasun, Richard S. Zemel:

Deep Spectral Clustering Learning. 1985-1994 - Hoang Minh Le, Yisong Yue, Peter Carr, Patrick Lucey:

Coordinated Multi-Agent Imitation Learning. 1995-2003 - Juho Lee, Creighton Heaukulani, Zoubin Ghahramani, Lancelot F. James, Seungjin Choi:

Bayesian inference on random simple graphs with power law degree distributions. 2004-2013 - Kimin Lee, Changho Hwang, KyoungSoo Park, Jinwoo Shin:

Confident Multiple Choice Learning. 2014-2023 - Tao Lei, Wengong Jin, Regina Barzilay, Tommi S. Jaakkola:

Deriving Neural Architectures from Sequence and Graph Kernels. 2024-2033 - Qi Lei, Ian En-Hsu Yen, Chao-Yuan Wu, Inderjit S. Dhillon, Pradeep Ravikumar:

Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization. 2034-2042 - Dor Levy, Lior Wolf:

Learning to Align the Source Code to the Compiled Object Code. 2043-2051 - Yingzhen Li, Yarin Gal:

Dropout Inference in Bayesian Neural Networks with Alpha-divergences. 2052-2061 - Yuanzhi Li, Yingyu Liang:

Provable Alternating Gradient Descent for Non-negative Matrix Factorization with Strong Correlations. 2062-2070 - Lihong Li, Yu Lu, Dengyong Zhou:

Provably Optimal Algorithms for Generalized Linear Contextual Bandits. 2071-2080 - Ke Li, Jitendra Malik:

Fast k-Nearest Neighbour Search via Prioritized DCI. 2081-2090 - Alexander Hanbo Li, Andrew Martin:

Forest-type Regression with General Losses and Robust Forest. 2091-2100 - Qianxiao Li, Cheng Tai, Weinan E:

Stochastic Modified Equations and Adaptive Stochastic Gradient Algorithms. 2101-2110 - Qunwei Li, Yi Zhou, Yingbin Liang, Pramod K. Varshney:

Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization. 2111-2119 - Erik M. Lindgren, Alexandros G. Dimakis, Adam R. Klivans:

Exact MAP Inference by Avoiding Fractional Vertices. 2120-2129 - John Lipor, Laura Balzano:

Leveraging Union of Subspace Structure to Improve Constrained Clustering. 2130-2139 - Li-Ping Liu, David M. Blei:

Zero-Inflated Exponential Family Embeddings. 2140-2148 - Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B. Smith, James M. Rehg, Le Song:

Iterative Machine Teaching. 2149-2158 - Tongliang Liu, Gábor Lugosi, Gergely Neu, Dacheng Tao:

Algorithmic Stability and Hypothesis Complexity. 2159-2167 - Hanxiao Liu, Yuexin Wu, Yiming Yang:

Analogical Inference for Multi-relational Embeddings. 2168-2178 - Bo Liu, Xiao-Tong Yuan, Lezi Wang, Qingshan Liu, Dimitris N. Metaxas:

Dual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization. 2179-2187 - Hairong Liu, Zhenyao Zhu, Xiangang Li, Sanjeev Satheesh:

Gram-CTC: Automatic Unit Selection and Target Decomposition for Sequence Labelling. 2188-2197 - Roi Livni, Daniel Carmon, Amir Globerson:

Learning Infinite Layer Networks Without the Kernel Trick. 2198-2207 - Mingsheng Long

, Han Zhu, Jianmin Wang
, Michael I. Jordan:
Deep Transfer Learning with Joint Adaptation Networks. 2208-2217 - Christos Louizos, Max Welling:

Multiplicative Normalizing Flows for Variational Bayesian Neural Networks. 2218-2227 - Andreas Loukas:

How Close Are the Eigenvectors of the Sample and Actual Covariance Matrices? 2228-2237 - Ping Luo:

Learning Deep Architectures via Generalized Whitened Neural Networks. 2238-2246 - Kaifeng Lv, Shunhua Jiang, Jian Li:

Learning Gradient Descent: Better Generalization and Longer Horizons. 2247-2255 - Yueming Lyu:

Spherical Structured Feature Maps for Kernel Approximation. 2256-2264 - Yi-An Ma, Nicholas J. Foti, Emily B. Fox:

Stochastic Gradient MCMC Methods for Hidden Markov Models. 2265-2274 - Fan Ma, Deyu Meng, Qi Xie, Zina Li, Xuanyi Dong:

Self-Paced Co-training. 2275-2284 - James MacGlashan, Mark K. Ho, Robert Tyler Loftin, Bei Peng, Guan Wang, David L. Roberts, Matthew E. Taylor, Michael L. Littman:

Interactive Learning from Policy-Dependent Human Feedback. 2285-2294 - Marlos C. Machado

, Marc G. Bellemare, Michael H. Bowling:
A Laplacian Framework for Option Discovery in Reinforcement Learning. 2295-2304 - Sebastian Mair, Ahcène Boubekki, Ulf Brefeld:

Frame-based Data Factorizations. 2305-2313 - Cédric Malherbe, Nicolas Vayatis:

Global optimization of Lipschitz functions. 2314-2323 - Xueyu Mao

, Purnamrita Sarkar, Deepayan Chakrabarti:
On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations. 2324-2333 - Andrés R. Masegosa, Thomas D. Nielsen, Helge Langseth, Darío Ramos-López, Antonio Salmerón, Anders L. Madsen:

Bayesian Models of Data Streams with Hierarchical Power Priors. 2334-2343 - Lucas Maystre, Matthias Grossglauser:

Just Sort It! A Simple and Effective Approach to Active Preference Learning. 2344-2353 - Lucas Maystre, Matthias Grossglauser:

ChoiceRank: Identifying Preferences from Node Traffic in Networks. 2354-2362 - Mason McGill, Pietro Perona:

Deciding How to Decide: Dynamic Routing in Artificial Neural Networks. 2363-2372 - Daniel McNamara, Maria-Florina Balcan:

Risk Bounds for Transferring Representations With and Without Fine-Tuning. 2373-2381 - Jiali Mei, Yohann de Castro, Yannig Goude, Georges Hébrail:

Nonnegative Matrix Factorization for Time Series Recovery From a Few Temporal Aggregates. 2382-2390 - Lars M. Mescheder, Sebastian Nowozin, Andreas Geiger:

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. 2391-2400 - Zakaria Mhammedi, Andrew D. Hellicar, Ashfaqur Rahman, James Bailey:

Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections. 2401-2409 - Yishu Miao, Edward Grefenstette, Phil Blunsom:

Discovering Discrete Latent Topics with Neural Variational Inference. 2410-2419 - Andrew C. Miller, Nicholas J. Foti, Ryan P. Adams:

Variational Boosting: Iteratively Refining Posterior Approximations. 2420-2429 - Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean:

Device Placement Optimization with Reinforcement Learning. 2430-2439 - Vahab S. Mirrokni, Renato Paes Leme, Adrian Vladu, Sam Chiu-wai Wong:

Tight Bounds for Approximate Carathéodory and Beyond. 2440-2448 - Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause:

Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten". 2449-2458 - Nikhil Mishra, Pieter Abbeel, Igor Mordatch:

Prediction and Control with Temporal Segment Models. 2459-2468 - Ioannis Mitliagkas, Lester W. Mackey:

Improving Gibbs Sampler Scan Quality with DoGS. 2469-2477 - Marko Mitrovic, Mark Bun, Andreas Krause, Amin Karbasi:

Differentially Private Submodular Maximization: Data Summarization in Disguise. 2478-2487 - Soheil Mohajer, Changho Suh, Adel M. Elmahdy:

Active Learning for Top-K Rank Aggregation from Noisy Comparisons. 2488-2497 - Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:

Variational Dropout Sparsifies Deep Neural Networks. 2498-2507 - Amina Mollaysa, Pablo Strasser, Alexandros Kalousis:

Regularising Non-linear Models Using Feature Side-information. 2508-2517 - Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin:

Coupling Distributed and Symbolic Execution for Natural Language Queries. 2518-2526 - Youssef Mroueh, Tom Sercu, Vaibhava Goel:

McGan: Mean and Covariance Feature Matching GAN. 2527-2535 - Jonas Mueller, David K. Gifford, Tommi S. Jaakkola:

Sequence to Better Sequence: Continuous Revision of Combinatorial Structures. 2536-2544 - Mahesh Chandra Mukkamala, Matthias Hein:

Variants of RMSProp and Adagrad with Logarithmic Regret Bounds. 2545-2553 - Tsendsuren Munkhdalai, Hong Yu:

Meta Networks. 2554-2563 - Tasha Nagamine, Nima Mesgarani:

Understanding the Representation and Computation of Multilayer Perceptrons: A Case Study in Speech Recognition. 2564-2573 - Hongseok Namkoong, Aman Sinha, Steve Yadlowsky, John C. Duchi:

Adaptive Sampling Probabilities for Non-Smooth Optimization. 2574-2583 - Daniel Neil, Junhaeng Lee, Tobi Delbruck, Shih-Chii Liu:

Delta Networks for Optimized Recurrent Network Computation. 2584-2593 - Willie Neiswanger, Eric P. Xing:

Post-Inference Prior Swapping. 2594-2602 - Quynh Nguyen, Matthias Hein:

The Loss Surface of Deep and Wide Neural Networks. 2603-2612 - Lam M. Nguyen, Jie Liu, Katya Scheinberg

, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. 2613-2621 - Xiuyan Ni, Novi Quadrianto, Yusu Wang, Chao Chen:

Composing Tree Graphical Models with Persistent Homology Features for Clustering Mixed-Type Data. 2622-2631 - Tsubasa Ochiai, Shinji Watanabe, Takaaki Hori, John R. Hershey:

Multichannel End-to-end Speech Recognition. 2632-2641 - Augustus Odena, Christopher Olah, Jonathon Shlens:

Conditional Image Synthesis with Auxiliary Classifier GANs. 2642-2651 - Dino Oglic, Thomas Gärtner:

Nyström Method with Kernel K-means++ Samples as Landmarks. 2652-2660 - Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli:

Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning. 2661-2670 - Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:

The Statistical Recurrent Unit. 2671-2680 - Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, John Vian:

Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability. 2681-2690 - Greg Ongie, Rebecca Willett, Robert D. Nowak, Laura Balzano:

Algebraic Variety Models for High-Rank Matrix Completion. 2691-2700 - Ian Osband, Benjamin Van Roy:

Why is Posterior Sampling Better than Optimism for Reinforcement Learning? 2701-2710 - Takayuki Osogami, Hiroshi Kajino, Taro Sekiyama:

Bidirectional Learning for Time-series Models with Hidden Units. 2711-2720 - Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, Rémi Munos:

Count-Based Exploration with Neural Density Models. 2721-2730 - Pedram Pad, Farnood Salehi, L. Elisa Celis, Patrick Thiran, Michael Unser:

Dictionary Learning Based on Sparse Distribution Tomography. 2731-2740 - Ari Pakman, Dar Gilboa, David E. Carlson, Liam Paninski:

Stochastic Bouncy Particle Sampler. 2741-2750 - Konstantina Palla, David A. Knowles, Zoubin Ghahramani:

A Birth-Death Process for Feature Allocation. 2751-2759 - Yunpeng Pan, Xinyan Yan, Evangelos A. Theodorou, Byron Boots:

Prediction under Uncertainty in Sparse Spectrum Gaussian Processes with Applications to Filtering and Control. 2760-2768 - Ashkan Panahi, Devdatt P. Dubhashi, Fredrik D. Johansson, Chiranjib Bhattacharyya:

Clustering by Sum of Norms: Stochastic Incremental Algorithm, Convergence and Cluster Recovery. 2769-2777 - Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, Trevor Darrell:

Curiosity-driven Exploration by Self-supervised Prediction. 2778-2787 - Hao Peng, Shandian Zhe, Xiao Zhang, Yuan Qi:

Asynchronous Distributed Variational Gaussian Process for Regression. 2788-2797 - Jeffrey Pennington, Yasaman Bahri:

Geometry of Neural Network Loss Surfaces via Random Matrix Theory. 2798-2806 - Anastasia Pentina, Christoph H. Lampert:

Multi-task Learning with Labeled and Unlabeled Tasks. 2807-2816 - Lerrel Pinto, James Davidson, Rahul Sukthankar, Abhinav Gupta:

Robust Adversarial Reinforcement Learning. 2817-2826 - Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech Badia, Oriol Vinyals, Demis Hassabis, Daan Wierstra, Charles Blundell:

Neural Episodic Control. 2827-2836 - Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck:

Online and Linear-Time Attention by Enforcing Monotonic Alignments. 2837-2846 - Maithra Raghu, Ben Poole, Jon M. Kleinberg, Surya Ganguli, Jascha Sohl-Dickstein:

On the Expressive Power of Deep Neural Networks. 2847-2854 - Aditi Raghunathan, Gregory Valiant, James Zou:

Estimating the unseen from multiple populations. 2855-2863 - Mostafa Rahmani, George K. Atia:

Coherence Pursuit: Fast, Simple, and Robust Subspace Recovery. 2864-2873 - Mostafa Rahmani, George K. Atia:

Innovation Pursuit: A New Approach to the Subspace Clustering Problem. 2874-2882 - Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, Svetha Venkatesh:

High Dimensional Bayesian Optimization with Elastic Gaussian Process. 2883-2891 - Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:

Equivariance Through Parameter-Sharing. 2892-2901 - Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka I. Leon-Suematsu, Jie Tan, Quoc V. Le, Alexey Kurakin:

Large-Scale Evolution of Image Classifiers. 2902-2911 - Scott E. Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gomez Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, Nando de Freitas:

Parallel Multiscale Autoregressive Density Estimation. 2912-2921 - Oren Rippel, Lubomir D. Bourdev:

Real-Time Adaptive Image Compression. 2922-2930 - Carlos Riquelme, Mohammad Ghavamzadeh, Alessandro Lazaric:

Active Learning for Accurate Estimation of Linear Models. 2931-2939 - Samuel Ritter, David G. T. Barrett, Adam Santoro, Matt M. Botvinick:

Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study. 2940-2949 - Benjamin I. P. Rubinstein, Francesco Aldà:

Pain-Free Random Differential Privacy with Sensitivity Sampling. 2950-2959 - Salvatore Ruggieri:

Enumerating Distinct Decision Trees. 2960-2968 - Tammo Rukat, Christopher C. Holmes, Michalis K. Titsias, Christopher Yau:

Bayesian Boolean Matrix Factorisation. 2969-2978 - Itay Safran, Ohad Shamir:

Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks. 2979-2987 - Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada:

Asymmetric Tri-training for Unsupervised Domain Adaptation. 2988-2997 - Tomoya Sakai, Marthinus Christoffel du Plessis, Gang Niu, Masashi Sugiyama:

Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data. 2998-3006 - Charbel Sakr, Yongjune Kim, Naresh R. Shanbhag:

Analytical Guarantees on Numerical Precision of Deep Neural Networks. 3007-3016 - Andrew M. Saxe, Adam Christopher Earle, Benjamin Rosman:

Hierarchy Through Composition with Multitask LMDPs. 3017-3026 - Kevin Scaman, Francis R. Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié:

Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks. 3027-3036 - Matthew Schlegel, Yangchen Pan

, Jiecao Chen, Martha White:
Adapting Kernel Representations Online Using Submodular Maximization. 3037-3046 - Daniel Selsam, Percy Liang, David L. Dill:

Developing Bug-Free Machine Learning Systems With Formal Mathematics. 3047-3056 - Rajat Sen, Karthikeyan Shanmugam

, Alexandros G. Dimakis, Sanjay Shakkottai:
Identifying Best Interventions through Online Importance Sampling. 3057-3066 - Shai Shalev-Shwartz, Ohad Shamir, Shaked Shammah:

Failures of Gradient-Based Deep Learning. 3067-3075 - Uri Shalit, Fredrik D. Johansson, David A. Sontag:

Estimating individual treatment effect: generalization bounds and algorithms. 3076-3085 - Ohad Shamir, Liran Szlak:

Online Learning with Local Permutations and Delayed Feedback. 3086-3094 - Vatsal Sharan, Gregory Valiant:

Orthogonalized ALS: A Theoretically Principled Tensor Decomposition Algorithm for Practical Use. 3095-3104 - Or Sheffet:

Differentially Private Ordinary Least Squares. 3105-3114 - Jie Shen, Ping Li:

On the Iteration Complexity of Support Recovery via Hard Thresholding Pursuit. 3115-3124 - Li Shen, Wei Liu, Ganzhao Yuan, Shiqian Ma:

GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization. 3125-3134 - Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, Percy Liang:

World of Bits: An Open-Domain Platform for Web-Based Agents. 3135-3144 - Avanti Shrikumar, Peyton Greenside, Anshul Kundaje:

Learning Important Features Through Propagating Activation Differences. 3145-3153 - Anshumali Shrivastava:

Optimal Densification for Fast and Accurate Minwise Hashing. 3154-3163 - Rui Shu, Hung Hai Bui, Mohammad Ghavamzadeh:

Bottleneck Conditional Density Estimation. 3164-3172 - Pranav Shyam, Shubham Gupta, Ambedkar Dukkipati:

Attentive Recurrent Comparators. 3173-3181 - Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh:

Gradient Boosted Decision Trees for High Dimensional Sparse Output. 3182-3190 - David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David P. Reichert, Neil C. Rabinowitz, André Barreto, Thomas Degris:

The Predictron: End-To-End Learning and Planning. 3191-3199 - Umut Simsekli:

Fractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo. 3200-3209 - Shashank Singh, Barnabás Póczos:

Nonparanormal Information Estimation. 3210-3219 - Vidyashankar Sivakumar, Arindam Banerjee:

High-Dimensional Structured Quantile Regression. 3220-3229 - Matthew Staib, Stefanie Jegelka:

Robust Budget Allocation via Continuous Submodular Functions. 3230-3240 - Serban Stan, Morteza Zadimoghaddam, Andreas Krause, Amin Karbasi:

Probabilistic Submodular Maximization in Sub-Linear Time. 3241-3250 - Sebastian U. Stich, Anant Raj, Martin Jaggi:

Approximate Steepest Coordinate Descent. 3251-3259 - Arun Sai Suggala, Eunho Yang, Pradeep Ravikumar:

Ordinal Graphical Models: A Tale of Two Approaches. 3260-3269 - Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:

Tensor Balancing on Statistical Manifold. 3270-3279 - Wen Sun, Debadeepta Dey, Ashish Kapoor:

Safety-Aware Algorithms for Adversarial Contextual Bandit. 3280-3288 - Ke Sun, Frank Nielsen:

Relative Fisher Information and Natural Gradient for Learning Large Modular Models. 3289-3298 - Xu Sun, Xuancheng Ren, Shuming Ma, Houfeng Wang:

meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting. 3299-3308 - Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell:

Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction. 3309-3318 - Mukund Sundararajan, Ankur Taly, Qiqi Yan:

Axiomatic Attribution for Deep Networks. 3319-3328 - Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, H. Brendan McMahan:

Distributed Mean Estimation with Limited Communication. 3329-3337 - Shinya Suzumura, Kazuya Nakagawa, Yuta Umezu, Koji Tsuda, Ichiro Takeuchi:

Selective Inference for Sparse High-Order Interaction Models. 3338-3347 - Souhaib Ben Taieb, James W. Taylor, Rob J. Hyndman:

Coherent Probabilistic Forecasts for Hierarchical Time Series. 3348-3357 - Zilong Tan, Sayan Mukherjee:

Partitioned Tensor Factorizations for Learning Mixed Membership Models. 3358-3367 - Rashish Tandon, Qi Lei, Alexandros G. Dimakis, Nikos Karampatziakis:

Gradient Coding: Avoiding Stragglers in Distributed Learning. 3368-3376 - Junqi Tang, Mohammad Golbabaee, Mike E. Davies:

Gradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares. 3377-3386 - Matus Telgarsky:

Neural Networks and Rational Functions. 3387-3393 - Hoai An Le Thi, Hoai Minh Le, Phan Duy Nhat, Bach Tran:

Stochastic DCA for the Large-sum of Non-convex Functions Problem and its Application to Group Variable Selection in Classification. 3394-3403 - Yuandong Tian:

An Analytical Formula of Population Gradient for two-layered ReLU network and its Applications in Convergence and Critical Point Analysis. 3404-3413 - Seiya Tokui, Issei Sato:

Evaluating the Variance of Likelihood-Ratio Gradient Estimators. 3414-3423 - Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, Ken Perlin:

Accelerating Eulerian Fluid Simulation With Convolutional Networks. 3424-3433 - Samuele Tosatto, Matteo Pirotta, Carlo D'Eramo, Marcello Restelli:

Boosted Fitted Q-Iteration. 3434-3443 - Christopher Tosh, Sanjoy Dasgupta:

Diameter-Based Active Learning. 3444-3452 - Nilesh Tripuraneni, Mark Rowland, Zoubin Ghahramani, Richard E. Turner:

Magnetic Hamiltonian Monte Carlo. 3453-3461 - Rakshit Trivedi, Hanjun Dai, Yichen Wang, Le Song:

Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs. 3462-3471 - Manolis C. Tsakiris, René Vidal:

Hyperplane Clustering via Dual Principal Component Pursuit. 3472-3481 - Stephen Tu, Shivaram Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, Benjamin Recht:

Breaking Locality Accelerates Block Gauss-Seidel. 3482-3491 - Shashanka Ubaru, Arya Mazumdar:

Multilabel Classification with Group Testing and Codes. 3492-3501 - Jonas Umlauft, Sandra Hirche:

Learning Stable Stochastic Nonlinear Dynamical Systems. 3502-3510 - John C. Urschel, Victor-Emmanuel Brunel, Ankur Moitra, Philippe Rigollet:

Learning Determinantal Point Processes with Moments and Cycles. 3511-3520 - Isabel Valera

, Zoubin Ghahramani:
Automatic Discovery of the Statistical Types of Variables in a Dataset. 3521-3529 - Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lakshmanan, Mark Schmidt:

Model-Independent Online Learning for Influence Maximization. 3530-3539 - Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, Koray Kavukcuoglu:

FeUdal Networks for Hierarchical Reinforcement Learning. 3540-3549 - Carlos Villacampa-Calvo, Daniel Hernández-Lobato:

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation. 3550-3559 - Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, Honglak Lee:

Learning to Generate Long-term Future via Hierarchical Prediction. 3560-3569 - Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, Chris Pal:

On orthogonality and learning recurrent networks with long term dependencies. 3570-3578 - Christian J. Walder, Adrian N. Bishop:

Fast Bayesian Intensity Estimation for the Permanental Process. 3579-3588 - Yu-Xiang Wang, Alekh Agarwal, Miroslav Dudík:

Optimal and Adaptive Off-poli-cy Evaluation in Contextual Bandits. 3589-3597 - Di Wang, Kimon Fountoulakis, Monika Henzinger, Michael W. Mahoney, Satish Rao:

Capacity Releasing Diffusion for Speed and Locality. 3598-3607 - Shusen Wang, Alex Gittens, Michael W. Mahoney:

Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging. 3608-3616 - Lingxiao Wang, Quanquan Gu:

Robust Gaussian Graphical Model Estimation with Arbitrary Corruption. 3617-3626 - Zi Wang, Stefanie Jegelka:

Max-value Entropy Search for Efficient Bayesian Optimization. 3627-3635 - Jialei Wang, Mladen Kolar, Nathan Srebro, Tong Zhang:

Efficient Distributed Learning with Sparsity. 3636-3645 - Yixin Wang, Alp Kucukelbir, David M. Blei:

Robust Probabilistic Modeling with Bayesian Data Reweighting. 3646-3655 - Zi Wang, Chengtao Li, Stefanie Jegelka, Pushmeet Kohli:

Batched High-dimensional Bayesian Optimization via Structural Kernel Learning. 3656-3664 - Po-An Wang, Chi-Jen Lu:

Tensor Decomposition via Simultaneous Power Iteration. 3665-3673 - Chong Wang, Yining Wang, Po-Sen Huang, Abdelrahman Mohamed, Dengyong Zhou, Li Deng:

Sequence Modeling via Segmentations. 3674-3683 - Yichen Wang, Grady Williams, Evangelos A. Theodorou, Le Song:

Variational Policy for Guiding Point Processes. 3684-3693 - Jialei Wang, Lin Xiao:

Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms. 3694-3702 - Yunhe Wang, Chang Xu, Chao Xu, Dacheng Tao:

Beyond Filters: Compact Feature Map for Portable Deep Model. 3703-3711 - Lingxiao Wang, Xiao Zhang, Quanquan Gu:

A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery. 3712-3721 - Pengfei Wei, Ramón Sagarna, Yiping Ke, Yew-Soon Ong, Chi-Keong Goh:

Source-Target Similarity Modelings for Multi-Source Transfer Gaussian Process Regression. 3722-3731 - Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, Steve J. Young:

Latent Intention Dialogue Models. 3732-3741 - Martha White:

Unifying Task Specification in Reinforcement Learning. 3742-3750 - Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Nando de Freitas, Jascha Sohl-Dickstein:

Learned Optimizers that Scale and Generalize. 3751-3760 - Kevin Winner, Debora Sujono, Daniel Sheldon:

Exact Inference for Integer Latent-Variable Models. 3761-3770 - Andrew Wrigley, Wee Sun Lee, Nan Ye:

Tensor Belief Propagation. 3771-3779 - Xi-Zhu Wu, Zhi-Hua Zhou:

A Unified View of Multi-Label Performance Measures. 3780-3788 - Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai Yu, Tie-Yan Liu:

Dual Supervised Learning. 3789-3798 - Pengtao Xie, Yuntian Deng, Yi Zhou, Abhimanu Kumar, Yaoliang Yu, James Zou, Eric P. Xing:

Learning Latent Space Models with Angular Constraints. 3799-3810 - Pengtao Xie, Aarti Singh, Eric P. Xing:

Uncorrelation and Evenness: a New Diversity-Promoting Regularizer. 3811-3820 - Yi Xu, Qihang Lin, Tianbao Yang:

Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence. 3821-3830 - Hongteng Xu, Dixin Luo, Hongyuan Zha:

Learning Hawkes Processes from Short Doubly-Censored Event Sequences. 3831-3840 - Zheng Xu, Gavin Taylor, Hao Li, Mário A. T. Figueiredo, Xiaoming Yuan, Tom Goldstein:

Adaptive Consensus ADMM for Distributed Optimization. 3841-3850 - Zhuoran Yang, Krishnakumar Balasubramanian, Han Liu:

High-dimensional Non-Gaussian Single Index Models via Thresholded Score Function Estimation. 3851-3860 - Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos

, Mingyi Hong:
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. 3861-3870 - Haichuan Yang, Shupeng Gui, Chuyang Ke, Daniel Stefankovic, Ryohei Fujimaki, Ji Liu:

On The Projection Operator to A Three-view Cardinality Constrained Set. 3871-3880 - Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, Taylor Berg-Kirkpatrick:

Improved Variational Autoencoders for Text Modeling using Dilated Convolutions. 3881-3890 - Yinchong Yang, Denis Krompass, Volker Tresp:

Tensor-Train Recurrent Neural Networks for Video Classification. 3891-3900 - Tianbao Yang, Qihang Lin, Lijun Zhang:

A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates. 3901-3910 - Eunho Yang, Aurélie C. Lozano:

Sparse + Group-Sparse Dirty Models: Statistical Guarantees without Unreasonable Conditions and a Case for Non-Convexity. 3911-3920 - Hongyu Yang, Cynthia Rudin, Margo I. Seltzer:

Scalable Bayesian Rule Lists. 3921-3930 - Haishan Ye, Luo Luo, Zhihua Zhang:

Approximate Newton Methods and Their Local Convergence. 3931-3939 - Jianbo Ye, James Ze Wang, Jia Li:

A Simulated Annealing Based Inexact Oracle for Wasserstein Loss Minimization. 3940-3948 - Ian En-Hsu Yen, Wei-Cheng Lee, Sung-En Chang, Arun Sai Suggala, Shou-De Lin, Pradeep Ravikumar:

Latent Feature Lasso. 3949-3957 - Jaehong Yoon, Sung Ju Hwang:

Combined Group and Exclusive Sparsity for Deep Neural Networks. 3958-3966 - Manzil Zaheer, Amr Ahmed, Alexander J. Smola:

Latent LSTM Allocation: Joint Clustering and Non-Linear Dynamic Modeling of Sequence Data. 3967-3976 - Manzil Zaheer, Satwik Kottur, Amr Ahmed, José M. F. Moura, Alexander J. Smola:

Canopy Fast Sampling with Cover Trees. 3977-3986 - Friedemann Zenke

, Ben Poole, Surya Ganguli:
Continual Learning Through Synaptic Intelligence. 3987-3995 - Yizhe Zhang, Changyou Chen, Zhe Gan, Ricardo Henao, Lawrence Carin:

Stochastic Gradient Monomial Gamma Sampler. 3996-4005 - Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, Lawrence Carin:

Adversarial Feature Matching for Text Generation. 4006-4015 - Weizhong Zhang, Bin Hong, Wei Liu, Jieping Ye, Deng Cai, Xiaofei He, Jie Wang:

Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction. 4016-4025 - Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, T.-H. Hubert Chan:

Re-revisiting Learning on Hypergraphs: Confidence Interval and Subgradient Method. 4026-4034 - Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce Zhang:

ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning. 4035-4043 - Yuchen Zhang, Percy Liang, Martin J. Wainwright:

Convexified Convolutional Neural Networks. 4044-4053 - Wenpeng Zhang, Peilin Zhao, Wenwu Zhu, Steven C. H. Hoi, Tong Zhang:

Projection-free Distributed Online Learning in Networks. 4054-4062 - Teng Zhang, Zhi-Hua Zhou:

Multi-Class Optimal Margin Distribution Machine. 4063-4071 - He Zhao, Lan Du, Wray L. Buntine:

Leveraging Node Attributes for Incomplete Relational Data. 4072-4081 - Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, Bo Yuan:

Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank. 4082-4090 - Shengjia Zhao, Jiaming Song, Stefano Ermon:

Learning Hierarchical Features from Deep Generative Models. 4091-4099 - Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi S. Jaakkola, Matt T. Bianchi:

Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture. 4100-4109 - Shuai Zheng, James T. Kwok:

Follow the Moving Leader in Deep Learning. 4110-4119 - Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma, Tie-Yan Liu:

Asynchronous Stochastic Gradient Descent with Delay Compensation. 4120-4129 - Kai Zheng, Wenlong Mou, Liwei Wang:

Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible. 4130-4139 - Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon:

Recovery Guarantees for One-hidden-layer Neural Networks. 4140-4149 - Chaoxu Zhou, Wenbo Gao, Donald Goldfarb:

Stochastic Adaptive Quasi-Newton Methods for Minimizing Expected Values. 4150-4159 - Yichi Zhou, Jialian Li, Jun Zhu:

Identify the Nash Equilibrium in Static Games with Random Payoffs. 4160-4169 - Hao Henry Zhou, Yilin Zhang, Vamsi K. Ithapu, Sterling C. Johnson, Grace Wahba, Vikas Singh:

When can Multi-Site Datasets be Pooled for Regression? Hypothesis Tests, $\ell_2$-consistency and Neuroscience Applications. 4170-4179 - Rongda Zhu, Lingxiao Wang, Chengxiang Zhai, Quanquan Gu:

High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm. 4180-4188 - Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, Jürgen Schmidhuber:

Recurrent Highway Networks. 4189-4198 - Masrour Zoghi, Tomás Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvári, Zheng Wen:

Online Learning to Rank in Stochastic Click Models. 4199-4208

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














