Abstract
Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800–850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.







Similar content being viewed by others
References
Steel Castings Handbook, Supplement 9, High Alloy Data Sheets: Heat Series (Crystal Lake, IL: Steel Founders’ Society of America, 2004), pp. 2–60.
H. Wen-Tai and R.W.K. Honeycombe, Mater. Sci. Technol. Ser. 1, 385 (1985).
H. Wen-Tai and R.W.K. Honeycombe, Mater. Sci. Technol. Ser. 1, 390 (1985).
G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 26, 1 (1991).
G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 26, 193 (1991).
G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 29, 387 (1992).
C.W. Thomas, M. Borshevsky, and A.N. Marshall, Mater. Sci. Technol. Ser. 8, 390 (1992).
R.A.P. Ibanez, G.D. de Almeida Soares, L.H. de Almeida, and I. Le May, Mater. Charact. 30, 243 (1993).
I.A. Sustaita-Torres, S. Haro-Rodriguez, M.P. Guerrero-Mata, M. de La Garza, E. Valdes, F. Deshcaux-Beaume, and R. Colas, Mater. Chem. Phys. 133, 1018 (2012).
E.J. Opila, Mater. Sci. Forum 461–464, 765 (2004).
E.J. Opila, N.S. Jacobson, D.L. Myers, and E.H. Copland, JOM 58, 22 (2006).
W.J. Quadakkers, J. Zurek, and M. Hansel, JOM 61, 44 (2009).
S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775 (2008).
F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).
T. Fujioka, M. Kinugasa, S. Iizumi, S. Teshima, I. Shimizu, US Pat. # 3,989,514, (1976).
J.A. McGurty, US Pat. # 4,086,085, (1978).
D. Satyanarayana, G. Malakondaiah, and D. Sarma, Mater. Sci. Eng., A 323, 119 (2002).
V. Ramakrishnan, J.A. McGurty, and N. Jayaraman, Oxid. Met. 60, 185 (1988).
B.A. Pint, R. Peraldi, and P.J. Maziasz, Mater. Sci. Forum 461–464, 815 (2004).
Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Science 316, 433 (2007).
Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 38A, 2737 (2007).
Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 42A, 922 (2011).
J.C. Pivin, D. Delaunay, S. Roquescarmes, A.M. Huntz, and P. Lacombe, Corros. Sci. 20, 351 (1980).
N. Belen, P. Tomaszewicz, and D.J. Young, Oxid. Met. 22, 227 (1984).
H. Asteman, W. Hartnagel, and D. Jakobi, Oxid. Met. 80, 3 (2013).
D.Q. Zhou, W.X. Zhao, H.H. Mao, Y.X. Hu, X.Q. Xu, X.Y. Sun, and Z.P. Lu, Mater. Sci. Eng., A 622, 91 (2015).
G. Muralidharan, Y. Yamamoto, and M.P. Brady, US Patent # 8,431,072, (2013).
B.A. Pint, J.P. Shingledecker, M.P. Brady, and P.J. Maziasz, in Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea, and Air. May 14–17 (Montreal, Canada, 2007), 3, 995 (2007).
M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Oxid. Met. 82, 359 (2014).
N. Saunders, X. Li, A.P. Miodownik, and J.-Ph. Schillé, Materials Design Approaches and Experiences, ed. J.-C. Zhao, M. Fahrmann, and T.M. Pollock (Warrendale, PA: TMS, 2001), pp.185–197.
N. Saunders, Fe-DATA, a database for thermodynamic calculations for Fe-Alloys. Thermotech Ltd., Surrey Technology Centre, The Surrey Research Park, Guilford, Surrey, GU2 7YG, UK.
G. Muralidharan, Y. Yamamoto, M.P. Brady, B.A. Pint, D. Voke, and R.I. Pankiw, Corrosion 2015, Paper 6114 (Houston: NACE International, 2015).
S. Shi and J.C. Lippold, Mater. Charact. 59, 1029 (2008).
R. Peraldi and B.A. Pint, Oxid. Met. 61, 463 (2004).
Acknowledgements
Research sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, the Technology Innovation Program at Oak Ridge National Laboratory, and ARPA-E under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muralidharan, G., Yamamoto, Y., Brady, M.P. et al. Development of Cast Alumina-Forming Austenitic Stainless Steels. JOM 68, 2803–2810 (2016). https://doi.org/10.1007/s11837-016-2094-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-016-2094-8