Content-Length: 286624 | pFad | https://doi.org/10.1007%2Fs11837-016-2094-8

a=86400 Development of Cast Alumina-Forming Austenitic Stainless Steels | JOM Skip to main content
Log in

Development of Cast Alumina-Forming Austenitic Stainless Steels

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800–850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steel Castings Handbook, Supplement 9, High Alloy Data Sheets: Heat Series (Crystal Lake, IL: Steel Founders’ Society of America, 2004), pp. 2–60.

  2. H. Wen-Tai and R.W.K. Honeycombe, Mater. Sci. Technol. Ser. 1, 385 (1985).

    Article  Google Scholar 

  3. H. Wen-Tai and R.W.K. Honeycombe, Mater. Sci. Technol. Ser. 1, 390 (1985).

    Article  Google Scholar 

  4. G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 26, 1 (1991).

    Article  Google Scholar 

  5. G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 26, 193 (1991).

    Article  Google Scholar 

  6. G.D. Barbabela, L.H. de Almeida, T.L. da Silveira, and I. Le May, Mater. Charact. 29, 387 (1992).

    Article  Google Scholar 

  7. C.W. Thomas, M. Borshevsky, and A.N. Marshall, Mater. Sci. Technol. Ser. 8, 390 (1992).

    Article  Google Scholar 

  8. R.A.P. Ibanez, G.D. de Almeida Soares, L.H. de Almeida, and I. Le May, Mater. Charact. 30, 243 (1993).

    Article  Google Scholar 

  9. I.A. Sustaita-Torres, S. Haro-Rodriguez, M.P. Guerrero-Mata, M. de La Garza, E. Valdes, F. Deshcaux-Beaume, and R. Colas, Mater. Chem. Phys. 133, 1018 (2012).

    Article  Google Scholar 

  10. E.J. Opila, Mater. Sci. Forum 461–464, 765 (2004).

    Article  Google Scholar 

  11. E.J. Opila, N.S. Jacobson, D.L. Myers, and E.H. Copland, JOM 58, 22 (2006).

    Article  Google Scholar 

  12. W.J. Quadakkers, J. Zurek, and M. Hansel, JOM 61, 44 (2009).

    Article  Google Scholar 

  13. S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775 (2008).

    Article  Google Scholar 

  14. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Article  Google Scholar 

  15. T. Fujioka, M. Kinugasa, S. Iizumi, S. Teshima, I. Shimizu, US Pat. # 3,989,514, (1976).

  16. J.A. McGurty, US Pat. # 4,086,085, (1978).

  17. D. Satyanarayana, G. Malakondaiah, and D. Sarma, Mater. Sci. Eng., A 323, 119 (2002).

    Article  Google Scholar 

  18. V. Ramakrishnan, J.A. McGurty, and N. Jayaraman, Oxid. Met. 60, 185 (1988).

    Article  Google Scholar 

  19. B.A. Pint, R. Peraldi, and P.J. Maziasz, Mater. Sci. Forum 461–464, 815 (2004).

    Article  Google Scholar 

  20. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Science 316, 433 (2007).

    Article  Google Scholar 

  21. Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 38A, 2737 (2007).

    Article  Google Scholar 

  22. Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 42A, 922 (2011).

    Article  Google Scholar 

  23. J.C. Pivin, D. Delaunay, S. Roquescarmes, A.M. Huntz, and P. Lacombe, Corros. Sci. 20, 351 (1980).

    Article  Google Scholar 

  24. N. Belen, P. Tomaszewicz, and D.J. Young, Oxid. Met. 22, 227 (1984).

    Article  Google Scholar 

  25. H. Asteman, W. Hartnagel, and D. Jakobi, Oxid. Met. 80, 3 (2013).

    Article  Google Scholar 

  26. D.Q. Zhou, W.X. Zhao, H.H. Mao, Y.X. Hu, X.Q. Xu, X.Y. Sun, and Z.P. Lu, Mater. Sci. Eng., A 622, 91 (2015).

    Article  Google Scholar 

  27. G. Muralidharan, Y. Yamamoto, and M.P. Brady, US Patent # 8,431,072, (2013).

  28. B.A. Pint, J.P. Shingledecker, M.P. Brady, and P.J. Maziasz, in Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea, and Air. May 14–17 (Montreal, Canada, 2007), 3, 995 (2007).

  29. M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Oxid. Met. 82, 359 (2014).

    Article  Google Scholar 

  30. N. Saunders, X. Li, A.P. Miodownik, and J.-Ph. Schillé, Materials Design Approaches and Experiences, ed. J.-C. Zhao, M. Fahrmann, and T.M. Pollock (Warrendale, PA: TMS, 2001), pp.185–197.

  31. N. Saunders, Fe-DATA, a database for thermodynamic calculations for Fe-Alloys. Thermotech Ltd., Surrey Technology Centre, The Surrey Research Park, Guilford, Surrey, GU2 7YG, UK.

  32. G. Muralidharan, Y. Yamamoto, M.P. Brady, B.A. Pint, D. Voke, and R.I. Pankiw, Corrosion 2015, Paper 6114 (Houston: NACE International, 2015).

    Google Scholar 

  33. S. Shi and J.C. Lippold, Mater. Charact. 59, 1029 (2008).

    Article  Google Scholar 

  34. R. Peraldi and B.A. Pint, Oxid. Met. 61, 463 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Research sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, the Technology Innovation Program at Oak Ridge National Laboratory, and ARPA-E under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, G., Yamamoto, Y., Brady, M.P. et al. Development of Cast Alumina-Forming Austenitic Stainless Steels. JOM 68, 2803–2810 (2016). https://doi.org/10.1007/s11837-016-2094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2094-8

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007%2Fs11837-016-2094-8

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy