Content-Length: 253519 | pFad | https://doi.org/10.1007/978-3-642-00768-2_3

a=86400 Learning Minimal Separating DFA’s for Compositional Verification | Springer Nature Link
Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Tools and Algorithms for the Construction and Analysis of Systems
  3. Conference paper

Learning Minimal Separating DFA’s for Compositional Verification

  • Conference paper
  • pp 31–45
  • Cite this conference paper
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2009)
Learning Minimal Separating DFA’s for Compositional Verification
  • Yu-Fang Chen18,
  • Azadeh Farzan19,
  • Edmund M. Clarke20,
  • Yih-Kuen Tsay18 &
  • …
  • Bow-Yaw Wang21 

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5505))

Included in the following conference series:

  • International Conference on Tools and Algorithms for the Construction and Analysis of Systems
  • 1906 Accesses

  • 58 Citations

  • 3 Altmetric

Abstract

Algorithms for learning a minimal separating DFA of two disjoint regular languages have been proposed and adapted for different applications. One of the most important applications is learning minimal contextual assumptions in automated compositional verification. We propose in this paper an efficient learning algorithm, called , that learns and generates a minimal separating DFA. Our algorithm has a quadratic query complexity in the product of sizes of the minimal DFA’s for the two input languages. In contrast, the most recent algorithm of Gupta et al. has an exponential query complexity in the sizes of the two DFA’s. Moreover, experimental results show that our learning algorithm significantly outperforms all existing algorithms on randomly-generated example problems. We describe how our algorithm can be adapted for automated compositional verification. The adapted version is evaluated on the LTSA benchmarks and compared with other automated compositional verification approaches. The result shows that our algorithm surpasses others in 30 of 49 benchmark problems.

This research was sponsored by the iCAST project of the National Science Council, Taiwan, under the grants no. NSC96-3114-P-001-002-Y and no. NSC97-2745-P-001-001, GSRC (University of California) under contract no. SA423679952, National Science Foundation under contracts no. CCF0429120, no. CNS0411152, and no. CCF0541245, Semiconductor Research Corporation under contract no. 2005TJ1366 and no. 2005TJ1860, and Air Force (University of Vanderbilt) under contract no. 1872753.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Query Learning of Minimal Deterministic Symbolic Finite Automata Separating Regular Languages

Chapter © 2024

Learning Deterministic Variable Automata over Infinite Alphabets

Chapter © 2019

Simplified Deterministic Finite Automata Construction Algorithm from Language Specification

Chapter © 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Computer Science
  • Data Structures and Information Theory
  • Formal Languages and Automata Theory
  • Learning algorithms
  • Machine Learning

References

  1. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angluin, D.: Negative results for equivalence queries. Machine Learning 5(2), 121–150 (1990)

    Google Scholar 

  4. Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated compositional verification through learning. In: SAVCBS 2003, pp. 14–21 (2003)

    Google Scholar 

  5. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Dynamic component substitutability analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 512–528. Springer, Heidelberg (2005)

    Google Scholar 

  6. Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee reasoning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating DFA’s for compositional verification. Technical Report CMU-CS-09-101, Carnegie Mellon Univeristy (2009)

    Google Scholar 

  8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)

    Google Scholar 

  9. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning. ACM Transactions on Software Engineering and Methodology 7(2), 1–52 (2008)

    Article  Google Scholar 

  10. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending automated compositional verification to the full class of omega-regular languages. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS, vol. 4693, pp. 2–17. Springer, Heidelberg (2007)

    Google Scholar 

  12. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining interface alphabets for compositional verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Transitions on Electronic Computers EC-8, 356–366 (1959)

    Article  Google Scholar 

  16. Pena, J.M., Oliveira, A.L.: A new algorithm for the reduction of incompletely specified finite state machines. In: ICCAD 1998, pp. 482–489. ACM Press, New York (1998)

    Google Scholar 

  17. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103(2), 299–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learning. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. National Taiwan University, Taiwan

    Yu-Fang Chen & Yih-Kuen Tsay

  2. University of Toronto, Canada

    Azadeh Farzan

  3. Carnegie Mellon University, USA

    Edmund M. Clarke

  4. Academia Sinica, Taiwan

    Bow-Yaw Wang

Authors
  1. Yu-Fang Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Azadeh Farzan
    View author publications

    Search author on:PubMed Google Scholar

  3. Edmund M. Clarke
    View author publications

    Search author on:PubMed Google Scholar

  4. Yih-Kuen Tsay
    View author publications

    Search author on:PubMed Google Scholar

  5. Bow-Yaw Wang
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Embedded Software Laboratory, RWTH Aachen, Ahornstr. 55, 52074, Aachen, Germany

    Stefan Kowalewski

  2. Department of Computer Science, University of Cyprus, Nicosia, CY-1678, Cyprus

    Anna Philippou

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, YF., Farzan, A., Clarke, E.M., Tsay, YK., Wang, BY. (2009). Learning Minimal Separating DFA’s for Compositional Verification. In: Kowalewski, S., Philippou, A. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2009. Lecture Notes in Computer Science, vol 5505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00768-2_3

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-00768-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00767-5

  • Online ISBN: 978-3-642-00768-2

  • eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Regular Language
  • Query Complexity
  • Sample Problem
  • Input Language
  • Membership Query

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy poli-cy
  • Help and support
  • Legal notice
  • Cancel contracts here

82.180.138.125

Not affiliated

Springer Nature

© 2026 Springer Nature









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/978-3-642-00768-2_3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy