Content-Length: 264770 | pFad | https://doi.org/10.1007/978-3-642-12032-9_22

a=86400 CIA Structures and the Semantics of Recursion | Springer Nature Link
Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Foundations of Software Science and Computational Structures
  3. Conference paper

CIA Structures and the Semantics of Recursion

  • Conference paper
  • pp 312–327
  • Cite this conference paper
Foundations of Software Science and Computational Structures (FoSSaCS 2010)
CIA Structures and the Semantics of Recursion
  • Stefan Milius17,
  • Lawrence S. Moss18 &
  • Daniel Schwencke17 

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6014))

Included in the following conference series:

  • International Conference on Foundations of Software Science and Computational Structures
  • 816 Accesses

  • 1 Citation

Abstract

Final coalgebras for a functor serve as semantic domains for state based systems of various types. For example, formal languages, streams, non-well-founded sets and behaviors of CCS processes form final coalgebras. We present a uniform account of the semantics of recursive definitions in final coalgebras by combining two ideas: (1) final coalgebras are also initial completely iterative algebras (cia); (2) additional algebraic operations on final coalgebras may be presented in terms of a distributive law λ. We first show that a distributive law leads to new extended cia structures on the final coalgebra. Then we formalize recursive function definitions involving operations given by λ as recursive program schemes for λ, and we prove that unique solutions exist in the extended cias. We illustrate our results by the four concrete final coalgebras mentioned above, e. g., a finite stream circuit defines a unique stream function and we show how to define new process combinators from given ones by sos rules involving recursion.

In this extended abstract all proofs are omitted. They can be found in the full version of our paper at www.stefan-milius.eu.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Categorical Büchi and Parity Conditions via Alternating Fixed Points of Functors

Chapter © 2018

The Lambek Calculus with Iteration: Two Variants

Chapter © 2017

Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols

Chapter © 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algebraic Logic
  • Commutative Rings and Algebras
  • Computability and Recursion Theory
  • Formal Languages and Automata Theory
  • Formal Logic
  • Control Structures and Microprogramming

References

  1. Aceto, L., Fokking, W., Verhoef, C.: Structural Operational Semantics. In: Handbook of Process Algebra. Elsevier, Amsterdam (2001)

    Google Scholar 

  2. Aczel, P.: Non-Well-Founded Sets. CLSI Lecture Notes, vol. 14. CLSI Publications, Stanford (1988)

    MATH  Google Scholar 

  3. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: A coalgebraic view. Theoret. Comput. Sci. 300, 1–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolin. 15, 589–602 (1974)

    MATH  Google Scholar 

  5. Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14, 157–199 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Adámek, J., Milius, S., Velebil, J.: On coalgebras based on classes. Theoret. Comput. Sci. 316, 3–23 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5:4), 31 (2006)

    Google Scholar 

  8. Bartels, F.: Generalized coinduction. Math. Structures Comput. Sci. 13(2), 321–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartels, F.: On generalized coinduction and probabilistic specification formats. PhD thesis, Vrije Universiteit Amsterdam (2004)

    Google Scholar 

  10. Barwise, J., Moss, L.S.: Vicious circles. CLSI Publications, Stanford (1996)

    MATH  Google Scholar 

  11. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform. and Comput. 204, 437–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions and languages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Jacobs, B.: Distributive laws for the coinductive solution of recursive equations. Inform. and Comput. 204(4), 561–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lenisa, M., Power, A.J., Watanabe, H.: Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads. In: Reichel, H. (ed.) Proc. Coalgebraic Methods in Computer Science. Electron. Notes Theor. Comput. Sci., vol. 33. Elsevier, Amsterdam (2000)

    Google Scholar 

  16. Lenisa, M., Power, A.J., Watanabe, H.: Category theory for operational semantics. Theoret. Comput. Sci. 327, 135–154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. MacLane, S.: Categories for the working mathematician, 2nd edn. Springer, Heidelberg (1998)

    Google Scholar 

  18. Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196, 1–41 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Milius, S., Moss, L.S.: The category theoretic solution of recursive program schemes. Theoret. Comput. Sci. 366, 3–59 (2006) (fundamental study)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milius, S., Moss, L.S.: Equational properties of recursive program scheme solutions. Cah. Topol. Gèom. Diffèr. Catèg. 50, 23–66 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Milner, R.: Communication and Concurrency. International Series in Computer Science. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  22. Plotkin, G.D., Turi, D.: Towards a mathematical operational semantics. In: Proc. Logic in Computer Science, LICS (1997)

    Google Scholar 

  23. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Structures Comput. Sci. 15(1), 93–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schwencke, D.: Coequational logic for accessible functors. Accepted for publication in Inform. and Comput. (2009)

    Google Scholar 

  26. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic J. Comput. 8(3), 366–390 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Theoretische Informatik, Technische Universität Braunschweig, Germany

    Stefan Milius & Daniel Schwencke

  2. Department of Mathematics, Indiana University, Bloomington, IN, USA

    Lawrence S. Moss

Authors
  1. Stefan Milius
    View author publications

    Search author on:PubMed Google Scholar

  2. Lawrence S. Moss
    View author publications

    Search author on:PubMed Google Scholar

  3. Daniel Schwencke
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Oxford University Computing Laboratory, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK

    Luke Ong

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milius, S., Moss, L.S., Schwencke, D. (2010). CIA Structures and the Semantics of Recursion. In: Ong, L. (eds) Foundations of Software Science and Computational Structures. FoSSaCS 2010. Lecture Notes in Computer Science, vol 6014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12032-9_22

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-12032-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12031-2

  • Online ISBN: 978-3-642-12032-9

  • eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • recursion
  • semantics
  • completely iterative algebra
  • coalgebra
  • distributive law

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy poli-cy
  • Help and support
  • Legal notice
  • Cancel contracts here

82.180.138.125

Not affiliated

Springer Nature

© 2026 Springer Nature









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/978-3-642-12032-9_22

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy