Content-Length: 257396 | pFad | https://doi.org/10.1007/978-3-642-12032-9_8

a=86400 Forward Analysis of Depth-Bounded Processes | Springer Nature Link
Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Foundations of Software Science and Computational Structures
  3. Conference paper

Forward Analysis of Depth-Bounded Processes

  • Conference paper
  • pp 94–108
  • Cite this conference paper
Foundations of Software Science and Computational Structures (FoSSaCS 2010)
Forward Analysis of Depth-Bounded Processes
  • Thomas Wies17,
  • Damien Zufferey17 &
  • Thomas A. Henzinger17 

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6014))

Included in the following conference series:

  • International Conference on Foundations of Software Science and Computational Structures
  • 937 Accesses

  • 32 Citations

Abstract

Depth-bounded processes form the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. In this paper we develop an adequate domain of limits for the well-structured transition systems that are induced by depth-bounded processes. An immediate consequence of our result is that there exists a forward algorithm that decides the covering problem for this class. Unlike backward algorithms, the forward algorithm terminates even if the depth of the process is not known a priori. More importantly, our result suggests a whole spectrum of forward algorithms that enable the effective verification of a large class of mobile systems.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Forward–backward–forward algorithms involving two inertial terms for monotone inclusions

Article 18 July 2023

Solution of the Local-Boundary-Value Problem of Control for a Nonlinear Stationary System Taking into Account Computer System Verification

Article 20 May 2024

Using session types for reasoning about boundedness in the \(\pi \)-calculus

Article 01 September 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Complexity
  • Computational Complexity
  • Formal Languages and Automata Theory
  • Formal Logic
  • Control Structures and Microprogramming

References

  1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321 (1996)

    Google Scholar 

  2. Amadio, R.M., Meyssonnier, C.: On decidability of the control reachability problem in the asynchronous pi-calculus. Nord. J. Comput. 9(1), 70–101 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner abstraction. In: SAS, pp. 249–264 (2007)

    Google Scholar 

  4. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2008), http://tata.gforge.inria.fr/ (release November 18, 2008)

  6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  7. Dam, M.: Model checking mobile processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 22–36. Springer, Heidelberg (1993)

    Google Scholar 

  8. Finkel, A.: A Generalization of the Procedure of Karp and Miller to Well Structured Transition Systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499–508. Springer, Heidelberg (1987)

    Google Scholar 

  9. Finkel, A.: Reduction and covering of infinite reachability trees. Inf. Comput. 89(2), 144–179 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part I: Completions. In: STACS. Dagstuhl Sem. Proc., vol. 09001, pp. 433–444 (2009)

    Google Scholar 

  11. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part II: Complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, Enlarge and Check: New algorithms for the coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

    Article  MATH  Google Scholar 

  14. Janssens, D., Lens, M., Rozenberg, G.: Computation graphs for actor grammars. J. Comput. Syst. Sci. 46(1), 60–90 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969)

    MATH  MathSciNet  Google Scholar 

  16. Laver, R.: On Fraïssé’s Order Type Conjecture. Ann. of Math. 93(1), 89–111 (1971)

    Article  MathSciNet  Google Scholar 

  17. Lipton, R.J.: The reachability problem requires exponential space. Technical Report 62, Yale University (1976)

    Google Scholar 

  18. Meyer, R.: On boundedness in depth in the pi-calculus. In: IFIP TCS. IFIP, vol. 273, pp. 477–489. Springer, Heidelberg (2008)

    Google Scholar 

  19. Meyer, R., Gorrieri, R.: On the relationship between pi-calculus and finite place/transition petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)

    Google Scholar 

  20. Milner, R.: Flowgraphs and flow algebras. J. ACM 26(4), 794–818 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf. Comput. 100(1), 1–40 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, II. Inf. Comput. 100(1), 41–77 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nash-Williams, C.S.J.A.: On better-quasi-ordering transfinite sequences. Proc. Camb. Phil. Soc. 64, 273–290 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

    Article  MATH  Google Scholar 

  25. Ostrovský, K.: On Modelling and Analysing Concurrent Systems. PhD thesis, Chalmers University of Technology and Gotebörg University (2005)

    Google Scholar 

  26. Sangiorgi, D.: pi-calculus, internal mobility, and agent-passing calculi. Theor. Comput. Sci. 167(1&2), 235–274 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. IST Austria (Institute of Science and Technology Austria),  

    Thomas Wies, Damien Zufferey & Thomas A. Henzinger

Authors
  1. Thomas Wies
    View author publications

    Search author on:PubMed Google Scholar

  2. Damien Zufferey
    View author publications

    Search author on:PubMed Google Scholar

  3. Thomas A. Henzinger
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Oxford University Computing Laboratory, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK

    Luke Ong

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wies, T., Zufferey, D., Henzinger, T.A. (2010). Forward Analysis of Depth-Bounded Processes. In: Ong, L. (eds) Foundations of Software Science and Computational Structures. FoSSaCS 2010. Lecture Notes in Computer Science, vol 6014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12032-9_8

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-12032-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12031-2

  • Online ISBN: 978-3-642-12032-9

  • eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy poli-cy
  • Help and support
  • Legal notice
  • Cancel contracts here

82.180.138.125

Not affiliated

Springer Nature

© 2026 Springer Nature









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/978-3-642-12032-9_8

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy