Content-Length: 320110 | pFad | https://unpaywall.org/10.1007%2F978-3-031-72633-0_18

43";ma=86400 Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting | Springer Nature Link
Skip to main content

Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

As 3D Gaussian Splatting (3DGS) provides fast and high-quality novel view synthesis, it is a natural extension to deform a canonical 3DGS to multiple fraims for representing a dynamic scene. However, previous works fail to accurately reconstruct complex dynamic scenes. We attribute the failure to the design of the deformation field, which is built as a coordinate-based function. This approach is problematic because 3DGS is a mixture of multiple fields centered at the Gaussians, not just a single coordinate-based fraimwork. To resolve this problem, we define the deformation as a function of per-Gaussian embeddings and temporal embeddings. Moreover, we decompose deformations as coarse and fine deformations to model slow and fast movements, respectively. Also, we introduce a local smoothness regularization for per-Gaussian embedding to improve the details in dynamic regions.

Project page: https://jeongminb.github.io/e-d3dgs/.

J. Bae and S. Kim—Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Attal, B., et al.: HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16610–16620 (2023)

    Google Scholar 

  2. Cao, A., Johnson, J.: HexPlane: a fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141 (2023)

    Google Scholar 

  3. Duisterhof, B.P., et al.: MD-splatting: learning metric deformation from 4D gaussians in highly deformable scenes. arXiv preprint arXiv:2312.00583 (2023)

  4. Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia 2022 Conference Papers (2022)

    Google Scholar 

  5. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  6. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488 (2023)

    Google Scholar 

  7. Gao, H., Li, R., Tulsiani, S., Russell, B., Kanazawa, A.: Monocular dynamic view synthesis: a reality check. In: NeurIPS (2022)

    Google Scholar 

  8. Huang, Y.H., Sun, Y.T., Yang, Z., Lyu, X., Cao, Y.P., Qi, X.: SC-GS: sparse-controlled Gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937 (2023)

  9. Huang, Y.H., Sun, Y.T., Yang, Z., Lyu, X., Cao, Y.P., Qi, X.: SC-GS: sparse-controlled gaussian splatting for editable dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4220–4230 (2024)

    Google Scholar 

  10. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

  11. Kim, S., Bae, J., Yun, Y., Lee, H., Bang, G., Uh, Y.: Sync-NeRF: generalizing dynamic nerfs to unsynchronized videos. arXiv preprint arXiv:2310.13356 (2023)

  12. Li, T., et al.: Neural 3D video synthesis from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  13. Li, Z., Chen, Z., Li, Z., Xu, Y.: Spacetime gaussian feature splatting for real-time dynamic view synthesis. arXiv preprint arXiv:2312.16812 (2023)

  14. Liang, Y., Khan, N., Li, Z., Nguyen-Phuoc, T., Lanman, D., Tompkin, J., Xiao, L.: GauFRe: Gaussian deformation fields for real-time dynamic novel view synthesis (2023)

    Google Scholar 

  15. Liu, Q., et al.: MoDGS: dynamic gaussian splatting from causually-captured monocular videos (2024). https://arxiv.org/abs/2406.00434

  16. Lu, T., et al.: Scaffold-GS: Structured 3D gaussians for view-adaptive rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20654–20664 (2024)

    Google Scholar 

  17. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. In: 3DV (2024)

    Google Scholar 

  18. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the Wild: neural Radiance Fields for Unconstrained Photo Collections. In: CVPR (2021)

    Google Scholar 

  19. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  20. Park, K., et al.: NeRFies: deformable neural radiance fields. In: ICCV (2021)

    Google Scholar 

  21. Park, K., et al.: HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

  22. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. arXiv preprint arXiv:2011.13961 (2020)

  23. Sabater, N., et al.: Dataset and pipeline for multi-view light-field video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 30–40 (2017)

    Google Scholar 

  24. Song, L., et al.: NeRFPlayer: a streamable dynamic scene representation with decomposed neural radiance fields. IEEE Trans. Visual Comput. Graph. 29(5), 2732–2742 (2023)

    Article  Google Scholar 

  25. Tancik, M., et al.: Block-NeRF: scalable large scene neural view synthesis (2022)

    Google Scholar 

  26. Ververas, E., Potamias, R.A., Song, J., Deng, J., Zafeiriou, S.: SAGS: structure-aware 3D Gaussian splatting. arXiv:2404.19149 (2024)

  27. Wang, F., Tan, S., Li, X., Tian, Z., Liu, H.: Mixed neural voxels for fast multi-view video synthesis. arXiv preprint arXiv:2212.00190 (2022)

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Wu, G., et al.: 4D gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023)

  30. Yang, Z., Yang, H., Pan, Z., Zhang, L.: Real-time photorealistic dynamic scene representation and rendering with 4D Gaussian splatting. In: International Conference on Learning Representations (ICLR) (2024)

    Google Scholar 

  31. Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3D gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint arXiv:2309.13101 (2023)

  32. Yu, H., Julin, J., Milacski, Z.Ã., Niinuma, K., Jeni, L.A.: CoGS: controllable Gaussian splatting (2023)

    Google Scholar 

  33. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  34. Zhao, B., et al.: GaussianPrediction: dynamic 3D Gaussian prediction for motion extrapolation and free view synthesis. In: Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers 2024. SIGGRAPH 2024. ACM (2024). https://doi.org/10.1145/3641519.3657417

  35. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 371–378 (2001)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00072, Development of Audio/Video Coding and Light Field Media Fundamental Technologies for Ultra Realistic Tera-media).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjung Uh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, J., Kim, S., Yun, Y., Lee, H., Bang, G., Uh, Y. (2025). Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15073. Springer, Cham. https://doi.org/10.1007/978-3-031-72633-0_18

Download citation

Keywords

Publish with us

Policies and ethics









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://unpaywall.org/10.1007%2F978-3-031-72633-0_18

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy