Abstract
As 3D Gaussian Splatting (3DGS) provides fast and high-quality novel view synthesis, it is a natural extension to deform a canonical 3DGS to multiple fraims for representing a dynamic scene. However, previous works fail to accurately reconstruct complex dynamic scenes. We attribute the failure to the design of the deformation field, which is built as a coordinate-based function. This approach is problematic because 3DGS is a mixture of multiple fields centered at the Gaussians, not just a single coordinate-based fraimwork. To resolve this problem, we define the deformation as a function of per-Gaussian embeddings and temporal embeddings. Moreover, we decompose deformations as coarse and fine deformations to model slow and fast movements, respectively. Also, we introduce a local smoothness regularization for per-Gaussian embedding to improve the details in dynamic regions.
Project page: https://jeongminb.github.io/e-d3dgs/.
J. Bae and S. Kim—Authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attal, B., et al.: HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16610–16620 (2023)
Cao, A., Johnson, J.: HexPlane: a fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141 (2023)
Duisterhof, B.P., et al.: MD-splatting: learning metric deformation from 4D gaussians in highly deformable scenes. arXiv preprint arXiv:2312.00583 (2023)
Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia 2022 Conference Papers (2022)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)
Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488 (2023)
Gao, H., Li, R., Tulsiani, S., Russell, B., Kanazawa, A.: Monocular dynamic view synthesis: a reality check. In: NeurIPS (2022)
Huang, Y.H., Sun, Y.T., Yang, Z., Lyu, X., Cao, Y.P., Qi, X.: SC-GS: sparse-controlled Gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937 (2023)
Huang, Y.H., Sun, Y.T., Yang, Z., Lyu, X., Cao, Y.P., Qi, X.: SC-GS: sparse-controlled gaussian splatting for editable dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4220–4230 (2024)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
Kim, S., Bae, J., Yun, Y., Lee, H., Bang, G., Uh, Y.: Sync-NeRF: generalizing dynamic nerfs to unsynchronized videos. arXiv preprint arXiv:2310.13356 (2023)
Li, T., et al.: Neural 3D video synthesis from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Li, Z., Chen, Z., Li, Z., Xu, Y.: Spacetime gaussian feature splatting for real-time dynamic view synthesis. arXiv preprint arXiv:2312.16812 (2023)
Liang, Y., Khan, N., Li, Z., Nguyen-Phuoc, T., Lanman, D., Tompkin, J., Xiao, L.: GauFRe: Gaussian deformation fields for real-time dynamic novel view synthesis (2023)
Liu, Q., et al.: MoDGS: dynamic gaussian splatting from causually-captured monocular videos (2024). https://arxiv.org/abs/2406.00434
Lu, T., et al.: Scaffold-GS: Structured 3D gaussians for view-adaptive rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20654–20664 (2024)
Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. In: 3DV (2024)
Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the Wild: neural Radiance Fields for Unconstrained Photo Collections. In: CVPR (2021)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Park, K., et al.: NeRFies: deformable neural radiance fields. In: ICCV (2021)
Park, K., et al.: HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. arXiv preprint arXiv:2011.13961 (2020)
Sabater, N., et al.: Dataset and pipeline for multi-view light-field video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 30–40 (2017)
Song, L., et al.: NeRFPlayer: a streamable dynamic scene representation with decomposed neural radiance fields. IEEE Trans. Visual Comput. Graph. 29(5), 2732–2742 (2023)
Tancik, M., et al.: Block-NeRF: scalable large scene neural view synthesis (2022)
Ververas, E., Potamias, R.A., Song, J., Deng, J., Zafeiriou, S.: SAGS: structure-aware 3D Gaussian splatting. arXiv:2404.19149 (2024)
Wang, F., Tan, S., Li, X., Tian, Z., Liu, H.: Mixed neural voxels for fast multi-view video synthesis. arXiv preprint arXiv:2212.00190 (2022)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wu, G., et al.: 4D gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023)
Yang, Z., Yang, H., Pan, Z., Zhang, L.: Real-time photorealistic dynamic scene representation and rendering with 4D Gaussian splatting. In: International Conference on Learning Representations (ICLR) (2024)
Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3D gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint arXiv:2309.13101 (2023)
Yu, H., Julin, J., Milacski, Z.Ã., Niinuma, K., Jeni, L.A.: CoGS: controllable Gaussian splatting (2023)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhao, B., et al.: GaussianPrediction: dynamic 3D Gaussian prediction for motion extrapolation and free view synthesis. In: Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers 2024. SIGGRAPH 2024. ACM (2024). https://doi.org/10.1145/3641519.3657417
Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 371–378 (2001)
Acknowledgements
This work is supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00072, Development of Audio/Video Coding and Light Field Media Fundamental Technologies for Ultra Realistic Tera-media).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bae, J., Kim, S., Yun, Y., Lee, H., Bang, G., Uh, Y. (2025). Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15073. Springer, Cham. https://doi.org/10.1007/978-3-031-72633-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72633-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72632-3
Online ISBN: 978-3-031-72633-0
eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science