N

N

CADTalk: An Algorithm and Benchmark for Semantic
Commenting of CAD Programs
Haocheng Yuan, Jing Xu, Hao Pan, Adrien Bousseau, Niloy J Mitra,
Changjian Li

» To cite this version:

Haocheng Yuan, Jing Xu, Hao Pan, Adrien Bousseau, Niloy J Mitra, et al.. CADTalk: An Algorithm
and Benchmark for Semantic Commenting of CAD Programs. CVPR 2024 - IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, Jun 2024, Seattle, United States. pp.3753-3762,
10.1109/CVPR52733.2024.00360 . hal-04732991

HAL Id: hal-04732991
https://inria.hal.science/hal-04732991v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-04732991v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CADTalk: An Algorithm and Benchmark for Semantic Commenting
of CAD Programs

Haocheng Yuan! Jing Xu! Hao Pan?

'University of Edinburgh

4University College London
CADTalker
Input N Output
I & JWheet Hab

rotate_extrude()

translate([15, 01) rotate_extrude()

offset(2) translate([15, 0])
square([3, 12]); offset(2)

- square([3, 12]);

}

}

module m2() {

//Steam dome
linear_extrude(10)

module m2() {
linear_extrude(10)
offset(5)

square([40, 200]); offset(5)
for (x = [-8, -40]) square([40, 200]);
rotate([90, 0, 99]) //Wheels
ml(Q); for (x = [-80, -40])
- rotate([90, @, 90]1)
difference() { miQ;

translate([0, 4, 31D =

cube([42, 70, 1001); //Cab

translate([0, 4, 5]) difference() {
cube([44, 40, 40]); translate([@, 4, 31D
translate([@, 5, 2] cube([42, 70, 100]);
cube([36, 90, 100]); translate([@, 4, 51)

3
’ 3

Adrien Bousseau®® Niloy J. Mitra*®

2Microsoft Research Asia
5 Adobe Research

Changjian Li'

3Inria, Université Cote d’ Azur
Delft University of Technology

CADTalk

oo TE Em Em Em o o =y,

//generated airplane

//gt label: body
1,-1,-0. A

rotate([-9,
cube([15.2,
//gt label: wing
translate([2,0.5,-0.8])
Rotate([0,0,0.121])
cube([7.4,1.21,0.23]);

N
-_— e = ==

//generated cat
//gt label: body
translate([0.5,16,1.2])
rotate([169, -86, 100]1)
scale([11.,9.3,20.4])
sphere(r=1);

//gt label: head
translate([0.8,-0.4,1])
rotate([-0.2, -2, -90]1)

scale([14.1,10,10.4])
sphere(r=1);

//handcrafted Moai
//gt label: mouth
difference(){
translate([0, -

ht*.17,ht*.47])
sphere(ht*.1);
scale([1.55,1.4,1])
rotate_extrude()
translate([ht*.1,0,0])

Figure 1. Given a CAD program as input, our algorithm — CADTalker — automatically generates comments before each code blocks to
describe the shape part that is generated by the block (left). We evaluate our algorithm on a new dataset of commented CAD programs —
CADTalk - that contains both human-made and machine-made CAD programs (right).

Abstract

CAD programs are a popular way to compactly encode
shapes as a sequence of operations that are easy to para-
metrically modify. However, without sufficient semantic
comments and structure, such programs can be challeng-
ing to understand, let alone modify. We introduce the prob-
lem of semantic commenting CAD programs, wherein the
goal is to segment the input program into code blocks cor-
responding to semantically meaningful shape parts and as-
sign a semantic label to each block. We solve the problem
by combining program parsing with visual-semantic anal-
ysis afforded by recent advances in foundational language
and vision models. Specifically, by executing the input pro-
grams, we create shapes, which we use to generate con-
ditional photorealistic images to make use of semantic an-
notators for such images. We then distill the information

across the images and link back to the original programs to
semantically comment on them. Additionally, we collected
and annotated a benchmark dataset, CADTalk, consisting
of 5,288 machine-made programs and 45 human-made pro-
grams with ground truth semantic comments. We exten-
sively evaluated our approach, compared it to a GPT-based
baseline, and an open-set shape segmentation baseline, and
reported an 83.24% accuracy on the new CADTalk dataset.
Code and data: https://enigma-li.github.io/CADTalk/.

1. Introduction

Computer-Aided-Design (CAD) is the industry standard for
representing 3D shapes as sequences of geometric instruc-
tions, also referred to as CAD programs. These programs
are compact, expressive, and provide a parametric way to

https://enigma-li.github.io/CADTalk/

edit shapes. Decades of research have focused on devel-
oping domain-specific CAD languages, tools for author-
ing and robustly executing CAD programs, and even au-
tomatically generating them. Popular frameworks include
SketchUp, AutoCAD, FreeCAD, and Catia, to name a few.

However, without semantic annotations or comments,
CAD programs are challenging to parse and decipher as
one has to mentally execute the programs to reveal seman-
tic associations of code blocks with corresponding shape
parts. This is particularly problematic when the one using
the program differs from the one who authored it, being hu-
man or machine. We, as humans, are notorious for leaving
sparse comments when writing CAD programs. Machines,
on the other hand, can be made to leave systematic com-
ments when generating programs, but these comments may
not be semantically relevant nor follow a canonical struc-
ture. Without semantic comments and an associated struc-
ture, human users find it challenging to interpret and edit
CAD programs. Even machines may struggle to learn from
programs without a canonical structure and/or semantic as-
sociation to the underlying shapes.

In this paper, we introduce the problem of semantic com-
menting of CAD programs. Other than the input program
and the shape category it represents, we assume access to
an execution module to transform any target program to its
corresponding 3D shape. Our goal is to segment the pro-
gram into multi-level code blocks and assign each block a
comment indicating the shape part it represents (Fig. 1).

Solving this problem requires overcoming multiple chal-
lenges. First, CAD programs, especially the ones designed
by humans, contain highly structured constructs (e.g., sub-
routines, control flows) that organize shape primitives re-
cursively into meaningful parts, and their commenting de-
mands structure parsing in the first place. Second, working
directly in the program domain prevents visual recognition
of the corresponding shape parts. While executing the pro-
gram produces a shape that can be rendered, CAD programs
lack any material texture and, at best, have pseudo face col-
ors — executing them results in textureless projected images
that are challenging to interpret by vision models trained
on photographs. Third, CAD programs encode a vast ar-
ray of shapes across arbitrary categories. Managing this di-
versity requires an approach that can generalize beyond a
pre-defined set of semantic labels.

We introduce CADTalker for semantic commenting of
CAD programs (Fig. 1), which we achieve by combining
program parsing with visual-semantic analysis afforded by
recent advances in large language models (LLMs) and foun-
dational vision models. We first handle the nested program
structures by performing a syntax tree analysis that iden-
tifies commentable code blocks at multiple levels of pro-
gram constructs. Then, we address the second challenge
by leveraging conditional image generation to translate tex-

tureless CAD renderings into photorealistic images, which
vision models can handle. We employ this photorealistic
image synthesizer to render the CAD program from multi-
ple views, resulting in a rich visual depiction of the shape
produced by the program. We address the third challenge by
using LLMs and vision models to segment and annotate the
images with open-vocabulary labels. Finally, we aggregate
the segmentation and part labels from the multiview images
and transfer them back to relevant code blocks.

To evaluate our method and to foster future research on
this problem, we also created CAD7Talk — a new benchmark
for semantic commenting of CAD programs. We collected
5300+ programs from a variety of data sources (online
repositories [3, 5], and shape abstraction algorithms [28,
41]), comprising human-designed and machine-generated
CAD programs. We semi-automatically annotated these
programs to provide ground truth comments. Finally, we
propose evaluation metrics to score any semantic comment-
ing approach. Based on this dataset, we have conducted sta-
tistical evaluation, a comprehensive ablation study inspect-
ing several core components of our method, and compar-
isons with a GPT-based approach and an open-vocabulary
shape segmentation method (i.e., PartSLIP [26]). All the
evaluations demonstrate that CADTalker sets a good base-
line for future research on this problem.

In summary, this paper introduces the new task of seman-
tic commenting CAD programs and the first benchmark and
algorithm dedicated to this task.

2. Related Work

CAD programs. CAD programs represent 3D shapes as
sequences of geometric instructions, which brings advan-
tages in terms of compactness, editability, and modularity.
However, CAD programs are notoriously difficult to author,
as the effect of each instruction on the resulting shape can
be difficult to foresee. Recent work in interactive model-
ing eases CAD authoring thanks to differentiable execution
[8, 31], which allows editing program parameters via direct
shape manipulation, but does not allow modification of the
program structure. Closer to our goal is the recent work
by Kodnongbua et al. [22], who use large pre-trained image
and language models to discover semantically meaningful
parameter ranges from multi-view renderings of a CAD pro-
gram. Using similar ingredients, we target the complemen-
tary task of generating semantic comments for code blocks
that might include several parametric instructions.

Another stream of research aims at automatically gener-
ating CAD programs for reverse engineering [10, 43, 46],
sketch-based modeling [23], or generative modeling [17,
44, 45], see [39] for a recent survey. While algorithms ex-
ist to structure the raw code generated by such methods,
for instance by identifying compact macros that encapsu-
late repetitive parts [19, 33], in the absence of comments,

Module m1(Q){
cube(Q);

Module m1Q){

be(); //TBC q----~. e
" -C). I).

Module m2(){ ,

Module m2(Q){
RO{
mlQ
}
DO{.}

m1() //TBC

DO{.} //TBC

}

Main(){
m2Q); //TBC
m1l(Q); //TBC

Main(){
m2Q);
miQ);

}

Module mliii

i\)i}dl 201{

odule m. . -

W6 //tngine ‘ (gt
—

s
DO{.} //Tail

“Realistic
Airplane”

b) ControlNet Ql;%;]

: Tell we the main

part of an airplane]
in the form of list

)

i Sure; here's a
Python list for the
wain parts of an
akﬂane

airplane_parts =
["Body", "Wings",
"Tail", "Engines"
"Wheels",

"Pilot's Area",
"Wing Extensions",
“Engine Covers",
"wing Flaps",

Main

d) Cross-View
Cross-Image
¥ Voting

S

"Fuel Storage"]

Figure 2. Algorithm overview. We first parse the input program to identify commentable code blocks, marked with TBC (a). We then
execute the program and render the resulting shape under several viewpoints to obtain multiview depth maps, which we convert into realistic
images using image-to-image translation (b). In addition, we obtain a list of part names of the shape from ChatGPT. We use these labels to
segment semantic parts in the images using computer vision foundation models (c). Finally, we aggregate this semantic information across
views by linking it to the code blocks that correspond to the segmented parts (d).

machine-made code is difficult to interpret and build upon.
We designed our benchmark dataset to include both human-
made and machine-made CAD programs to foster research.
Program summarization. There is a large body of work on
the automatic generation of comments for generic program-
ming languages (C/C++, Python, Java, etc.). While early
methods were based on template matching and text retrieval
[13], the field then adopted sequence-to-sequence neural
models [4, 16] and most recently LLMs [9]. Such models
are typically trained on large corpus of commented code,
collected from code sharing platforms like StackOverflow
[16] and GitHub [9]. Unfortunately, we are not aware of
any large dataset of commented CAD programs that could
be used to train such language-specific models. Besides,
sequence-to-sequence models reason on raw code snippets
rather than on their execution, and as such are not equipped
to analyze the visual output of CAD programs. In contrast,
we leverage CAD execution and rendering to convert the
problem of code commenting into the problem of semantic
image segmentation, allowing us to build upon pre-trained
image models, and making our method agnostic to the in-
put CAD language. Nevertheless, we experimented with
few-shot training strategies of an LLM for code comment-
ing [2, 6], and observed a surprising ability of the LLM to
capture the geometric structure of an object category from
only one example CAD program, although it struggles to
generalize to different categories.

Semantic segmentation of images and shapes. We for-
mulate commenting of CAD programs as a semantic seg-
mentation task, making our approach related to prior work
on shape segmentation and labeling. Recent approaches to
label parts of 3D shapes employ deep learning, using neural
networks tailored to voxel grids [42], 3D meshes [11, 14],

point clouds [36]. Closest to our approach is the work
of Kalogerakis et al. [20, 40], who render the 3D shape
from multiple views to leverage 2D CNNs for segmenta-
tion tasks. We use pre-trained open-vocabulary object de-
tection [27] and segmentation [21]. Open-vocabulary meth-
ods rely on large image-language models [37] to recognize
arbitrary objects in images [25], avoiding the need for a pre-
defined set of labels. Our approach also relates to the recent
PartSLIP [26], which combines multi-view rendering and
a pre-trained image-language model GLIP [24] to segment
3D scans. A key difference is that the CAD programs we
target are not equipped with realistic colors and textures,
preventing the direct application of image models trained
on photographs. We tackle this by converting our synthetic
renderings into realistic images using image-to-image trans-
lation [47]. This strategy allows our approach to outperform
a concurrent zero-shot mesh segmentation method [1] (see
comparison in the supplementary).

3. Commenting Programs with CADTalker

Given a CAD program as input, our goal is to automatically
insert comments around CAD instructions, such that these
comments describe the semantic parts of the shape that the
CAD instructions produce upon execution. For example, in
Figure 1, the comments specify instructions responsible for
the wheels and cab of a train.

Recognizing object parts from CAD instructions is a
very difficult task, for both humans and machines, because
code instructions only describe shapes indirectly, via geo-
metric functions. Our key idea is to move the problem away
from the program domain, towards the image domain where
visual inference is much easier. To do so, we leverage CAD

execution to produce the 3D shape corresponding to the pro-
gram, we perform multiview rendering to obtain representa-
tive images of this shape, and we run computer vision mod-
els on these images to identify semantic parts and their la-
bels. We then propagate the labels in the opposite direction,
from images to the original CAD instructions. Fig. 2 illus-
trates the main steps of this cross-domain process. We next
describe how we leverage off-the-shelf foundation models
to achieve these tasks.

While there exist many different CAD domain-specific-
languages, and the algorithm we propose is agnostic to the
chosen language, we built our prototype implementation
around OpenSCAD [30] — a free CAD software based on
Constructive Solid Geometry (CSG).

3.1. Realistic Multiview Rendering

At the core of our approach is the idea of leveraging com-
puter vision models trained on photographs to recognize se-
mantic parts in CAD programs. To do so, our first step is to
execute the program to produce a 3D shape, and render im-
ages of that shape from ten representative viewpoints. We
distribute these viewpoints along a ring slightly above the
shape, as shown in Fig. 2.

However, many CAD programs only describe the geom-
etry of a shape and do not include realistic textures and ma-
terials. Furthermore, some of the CAD programs we con-
sider represent shapes in a simplified manner, missing ge-
ometric details or exhibiting spurious gaps between parts.
As a result, the images we obtain by directly rendering the
program output do not look realistic, and as such are not
well recognized by computer vision models (see the abla-
tion study in Sec. 5.2). We tackle this challenge by translat-
ing these renderings into photorealistic images using Con-
trolNet [47] — a method that adds image conditioning to a
large text-to-image diffusion model. Specifically, we render
a depth map of the shape from each of the viewpoints, and
we instruct ControlNet to turn each depth map into a realis-
tic image of the shape, providing the category name of the
object as a complementary text prompt.

In contrast to related work that seeks to imbue 3D shapes
with realistic texture maps [7, 38], our application scenario
does not necessitate different views to share a consistent ap-
pearance. On the contrary, we observed that the subsequent
step of recognizing object parts in the resulting images ben-
efits from diversity in appearance, since object parts that
might be ambiguous under a specific appearance might be-
come recognizable under a different appearance. We build
on this insight to further increase diversity by running Con-
trolNet with four different seeds on each of the ten views,
resulting in 40 realistic images of the shape in total. We
also note that for highly abstract shapes, the quality of the
image-to-image translation increases when we process the
depth maps with a morphologic closing [15] to fill in small

1: body 0.36

4 2: legs 0.33
4: paws 0.34

4 o —

6: eyes 0.53

7: nose 0.74
8: mouth 0.3

Figure 3. Given shapes (left) after executing programs, we use
ControlNet [47] to convert rendered depth maps into realistic im-
ages (middle), which form a valid input for detection and segmen-
tation models trained on photographs [21, 27] (right).

gaps (see supplemental materials for parameter settings).
Fig. 3 illustrates the realistic images we obtain.

3.2. Part Detection and Segmentation

Given realistic images of the shape, our next step is to seg-
ment each image into semantically meaningful parts. We do
so by leveraging both language and image foundation mod-
els. Since we do not want to restrict ourselves to a fixed list
of part labels, we turn to recent open vocabulary detection
algorithms to identify relevant parts. Specifically, we use
Grounding DINO [27], a method that takes as input an im-
age and the name of an object part of interest, and outputs
a bounding box of that part, if present in the image. While
users of our system can provide the list of parts to be de-
tected, we found that ChatGPT-v4 [34] provides good sug-
gestions of parts given the name of an object category. We
then convert each bounding box into a pixel-wise segment
by feeding the image and the bounding box to the Segment
Anything Model (SAM) [21]. We denote S} the segment
predicted for a given label [on a given image ¢. Fig. 3 shows
the segments and labels predicted for representative images.

3.3. Part Label Voting

The last step of our algorithm consists of aggregating the se-
mantic information of all 40 images of the shape and trans-
ferring this information to the corresponding code blocks.
Program Parsing. We first parse the input program to iden-
tify all commentable code blocks. Specifically, we con-
struct the syntax tree of the input program (Fig. 4c) and
traverse the tree from the top downward using breadth-first
search until we reach an irreducible block, i.e., a sequence
of instructions that corresponds either to a single geometric
primitive (cuboid, ellipsoid, etc.) or to a difference, inter-
section, or hull operation on primitives (Fig. 4a). We label
the irreducible blocks as commentable leaf nodes and tra-
verse the tree upward to collect all commentable blocks as
nodes parent of commentable nodes (Fig. 4b,d).

module FO{ module FO{

difference(){

- difference(){
scale([.5,2,1]) scale([.5,2,1])
sphere(5); sphere(5);

scale([1,3,11)

scale([1,3,11)}
cylinder(10,4,4);}

} cylinder(10,4,4);

module WO{
FO;

}

module TO{

>

}

module WO{
FO;

}

module TO{

>

-

-
main({ main({
hullO{.}; hullOf.};
WO WO
e O
N N
(a) Irreducible Blocks (b) Commentable Blocks

Figure 4. Program parsing. Irreducible blocks are basic-level
geometric primitives and their direct compositions (a), while com-
mentable blocks are code blocks of different compositional levels
that correspond to semantic comments (b). The downward traver-
sal of the syntax tree is used to identify irreducible blocks (c) and
the upward traversal to collect commentable blocks (d). Exemplar
masks of commentable blocks are shown in (¢) and (d) in red.

Mapping code blocks to image pixels. For each block to
be commented on, we render 10 views of the shape using a
white color for the block of interest and a background color
for all other blocks (see Fig. 4 (c)(d), where we rendered
the blocks in red for visualization purpose). This proce-
dure results in a set of binary masks {}} that indicate for
each view v the visible pixels of block b, providing us with
an explicit mapping between image pixels and code blocks.
Fig. 2 illustrates the view setup, detailed view angles can be
found in the supplemental material.

Aggregating semantic labels. We represent all possible
label assignments via a matrix C, where each entry C'(b,1)
quantifies the confidence of block b to be assigned label .
We fill in this matrix by accumulating labeling confidence
over all 40 images of the shape, in three steps. In a first step
we compute, for each image ¢ generated from view v, the
confidence of label [to be assigned to block b as:

C'(b,1) = Cprnol(i,1) x ToU(MY, S}, (1)

where Cpryo(i,1) is the confidence of label [in image 4
provided by Grounding DINO, S/ is the segmentation mask
provided by SAM, M} is the binary mask rendered for
block b in view v, and IoU is the Intersection-over-Union.
In a second step, we sum the confidence scores obtained for
all 4 images of each view. Finally, in a third step, we sum
the confidence scores over all 10 views. We perform this
aggregation in three steps to introduce intermediate filter-
ing of poor labels. In practice, after each step, we set to
zero the confidence of any label having a confidence below
a threshold. Finally, we assign to each block b the label that
received the highest cumulative confidence, max;(C'(b,1)).

4. Building the CADTalk Dataset

While a few datasets of CAD programs have been recently
introduced [43, 44], these programs do not include ground-
truth semantic comments. We address this issue by intro-
ducing CADTalk, a dataset of OpenSCAD [30] programs
enriched with part-based semantic comments (Figs. 1 and
5). We first describe how we collected and commented on
the programs in our dataset, and then introduce the metrics
we used to evaluate the quality of automatically generated
comments against this benchmark.

4.1. Collecting CAD Programs

We consider two distinct sources of programs to com-
ment on, each raising its specific challenges. On the
one hand, human-made programs are often well-structured,
with meaningful parts represented by independent code
blocks. However, these programs exhibit a large diversity
of instructions and program constructs, including macros,
nested loops, and boolean operations to create intricate ge-
ometry, which can be difficult to reason about in the pro-
gram domain. On the other hand, machine-made programs
tend to obey a simplified CAD language with few instruc-
tions [17], resulting in a rather flat structure without ob-
vious meaningful code blocks. Moreover, such programs
often generate abstract geometry made of simple primitives
(cuboids, ellipsoids), which can be difficult to reason about
in the visual domain. We built our dataset to contain repre-
sentative programs of both sources.

Human-made programs. We gathered a set of 45 Open-
SCAD programs from online repositories [3, 5], or made by
one of the authors. For each such program, we first iden-
tify each commentable code block as described in Sec. 3.3
(see Fig. 4). We then manually comment on each such block
with a label indicating the semantic part of the shape that the
code block corresponds to. When several irreducible blocks
correspond to the same semantic part, we comment on each
of them with the same label. We used ChatGPT-v4 [34] to
obtain a list of semantic part labels given the category name
of the object of interest.

We name the resulting set of semantically commented
programs CADTalk-Real. While this set is small due to the
difficulty of finding real programs and commenting on them
by hand, Figs. 1 and 5 show that it includes diverse human-
made and organic shapes of varying complexity.
Machine-made programs. Recent developments in shape
analysis and program synthesis have enabled significant
progress in generative models of CAD programs [39].
While the most recent models seek to capture high-level
geometric structures [18, 19], others produce a flat list of
geometric primitives [17, 41]. Since the human-made pro-
grams we have collected already exhibit complex structures,
we focused the second track of our dataset on flat programs.

We rely on automatic methods that convert 3D shapes

Table 1. CADTalk Statistics. The number of programs, lines of
code, and the number of parts are listed.

‘ #Programs ‘ #Lines (min, median, max) ‘ #Parts

CADTalk-Cube™ | 1322 (21, 40, 66) 4442
CADTalk-Cube™ | 1322 (61,72, 162) 4442
CADTulk-Ellip" 1322 (7. 115, 1077) 4442
CADTalk-Ellip" | 1322 (27,162, 1172) 4442
CADTulk-Real | 45 | (28,120, 381) | 210

into cuboid [41] and ellipsoid [28] abstractions. By feeding
these methods with semantically-labeled shapes from Part-
Net [32], we obtain programs formed as unions of cuboids
or ellipsoids, each such primitive forming a code block as-
sociated with a semantic label. In the eventuality where a
primitive covers several semantic parts of a shape, we asso-
ciate that primitive with all the corresponding labels, each
being treated as ground truth in our evaluation (i.e., either
of the labels predicted is counted as correct). Consecutive
blocks with the same labels can then be naturally grouped.

We followed this procedure to generate programs for
four object categories (Airplane, Chair, Table, and Animal).
As illustrated in Fig. 1, the cuboid abstractions typically
only contain a few primitives, resulting in a coarse approxi-
mation of the shapes, while the ellipsoid abstractions better
reproduce curved surfaces and details.

To further evaluate the impact of shape approximation,
we provide for each of the two types of abstraction (cuboids
and ellipsoids) two levels of details (low and high), re-
sulting in four sets of program named CADTalk-Cube”,
CADTalk-Cube™ CADTalk-EllipL, and CADTalk-EllipH s
respectively. On the one hand, a high level of details results
in long programs to comment on, where multiple primitives
need to be grouped under the same part label. On the other
hand, a low level of details results in approximate shapes
that are harder to recognize (Fig. 12 in the supplementary).

Tab. 1 provides statistics of our dataset (number of pro-
grams, number of lines of code per program, number of
semantic parts per program). In total, the dataset contains
over 5300 commented CAD programs. The CADTalk-Cube
and CADTalk-Ellip tracks allow to evaluate performance of
commenting algorithms at a large scale, while the CADTalk-
Real track provides a smaller albeit more diverse test set.

4.2. Evaluation Metrics

We propose two metrics to evaluate the performance of al-
gorithms on the new task of commenting CAD programs.
The first metric is block accuracy (B,..), which calculates
the successful rate of block-wise labeling, while the sec-
ond metric is semantic IoU (S7,y), which measures the
Intersection-over-Union value per semantic label, averaged
over all labels. Detailed formulations of the metrics can be
found in the supplemental material.

Intuitively, block accuracy quantifies the general perfor-

mance, while the semantic IoU considers the label distri-
bution among blocks, making it sensitive to the long-tail
problem where some labels only cover a few blocks.
Evaluation with synonyms. In practice, algorithms ad-
dressing the CAD program commenting problem may gen-
erate different labels than our ground truth annotations, al-
beit with a similar semantic meaning. We account for these
synonyms in our evaluation by asking ChatGPT-v4 to give
us, for a given list of predicted labels, its mapping to the list
of ground truth labels (if any). We then apply the mapping
before computing the metrics.

S. Experiments

We now describe our statistical and visual evaluations, we
provide implementation details as supplemental material.

5.1. Results

Tab. 2 reports the quantitative evaluation of our CADTalker
algorithm on the different tracks of our CADTalk dataset.
For each track, we evaluate our algorithm when provided
with either the ground-truth list of labels (GT Words) or the
list suggested by ChatGPT (GPT Words). For each setting,
we report both the block accuracy and the semantic IoU.
Our pipeline is not restricted to GPT4. We have also tested
with the open-source Llama2-70B (see supplementary).

Overall, our algorithm achieves similar results in both
settings, demonstrating the effectiveness of synonym map-
ping and the applicability of our algorithm to real-world
scenarios where ground truth labels are not available. The
two metrics reach slightly higher values on cuboid than on
ellipsoid abstractions, and on high level of details than on
low level. Ellipsoid abstractions often contain overlapping
primitives, which might be more difficult to label.

The real human-made programs in CADTalk-Real are
more diverse in terms of program structure, shape geom-
etry, and shape semantic granularity, leading to a 78.29%
and 66.22% for block accuracy and semantic ToU, respec-
tively. Our method sometimes mislabels parts that are spa-
tially close and semantically related, like the steam dome vs.
chimney in Fig. 1. Note that the ground truth labels we have
specified in our dataset might be biased towards a specific
granularity, which influences the metric (e.g., a coarse level
of semantics is easier to predict). Fig. 5 illustrates typical
visual results of our automatic commenting. More results
and failure cases can be found in the supplementary.

5.2. Ablation Study

Table 3 compares several versions of our algorithm.
Multi-image generation. Our algorithm generates 4 real-
istic images for each of the 10 views of the shape. Reduc-
ing to one image per view decreases accuracy (Table 3, w/o
MI), as the method is more sensitive to ambiguous shading,
texture and other artifacts produced by ControlNet [47].

(module AQ{

H }
hull({//head || hull(Q{//head

gphere(7);} ;phere(7);}

sphere(ht);

module LO module LO

.}
for for:

cube();//back || cube();//back

Figure 5. CADTalk Dataset. Example shapes from CADTalk (left) along with ground-truth (right) and predicted comments (far right). In
these examples, our prediction matches the ground truth, except for the Moai sculpture where CADTalker labeled the “head” code block as
“body”. Machine-made shapes are rendered with dark blue and placed behind the human-made shapes rendered with light blue.

Table 2. Evaluation of our method on CADTalk-Cube and CADTalk-Ellip benchmarks. See Table 4 for comparison with PartSLIP [26].

Dataset CADTalk-Cube CADTalk-Ellip
CADTalk-Cube™ CADTalk-Cube™ CADTalk-Ellip" CADTalk-Ellip™
Input Text GPT Words GT Words GPT Words GT Words GPT Words GT Words GPT Words ‘ GT Words
Metric | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stou | Bace | Stou
Airplane (4 parts) | 85.03 | 77.76 ~ 88.00 | 80.05 | 75.65 | 68.40 | 72.17 | 6527 | 74.78 | 65.77 80.04 | 69.25 | 72.52 | 65.90 | 76.60 | 65.70
Chair (4 parts) | 90.02 | 84.34 88.20 | 79.42 | 92.28 | 91.11 | 93.36 | 90.53 | 77.66 | 71.29 81.13 | 73.24 | 71.41 | 57.95 | 75.40 | 61.00
Table (2 parts) | 90.88 | 86.33 9091 | 85.64 | 95.76 | 93.50 | 90.90 | 85.89 | 83.06 | 74.71 83.56 | 74.60 | 81.21 | 75.76 | 79.02 | 72.38
Animal (4 parts) | 89.07 | 82.55 86.15 | 77.79 | 89.03 | 85.68 | 88.70 | 84.07 | 91.28 | 83.14 89.42 | 81.70 | 91.90 | 86.08 | 85.68 | 74.81
Average | 88.75 | 82.75 88.32 | 80.73 | 88.18 | 84.76 | 86.28 | 81.84 | 81.70 | 73.73 83.54 | 7470 | 79.26 | 71.42 | 79.18 | 68.47
Table 3. Statical evaluation of our ablation study with block accuracy Bacc.
Dataset CADTalk-Cube CADTalk-Ellip
CADTulk-Cube™ CADTalk-Cube* CADTulk-Ellip® CADTulk-Ellip™

Ab. Cond. | w/oMI w/oCN | w/oSM | Full | woMI | w/oCN | w/oSM | Full | woMI | w/ooCN | w/ooSM Full w/oMI | w/oCN | w/oSM | Full
Airplane 76.93 37.02 2847 | 85.03 | 65.87 2641 25.61 75.65 | 70.91 25.90 32.84 | 74.78 | 68.67 25.92 2483 | 72.52
Chair 73.77 59.70 35.48 | 90.02 | 88.48 38.50 21.28 | 92.28 | 73.44 70.62 33.59 | 77.66 | 67.32 60.93 2482 | 71.41
Table 86.35 79.79 59.90 | 90.88 | 91.95 80.72 39.23 95.76 | 75.44 80.01 50.78 | 83.06 | 77.70 76.08 3556 | 81.21
Animal 81.75 25.09 56.94 | 89.07 | 74.75 21.93 3820 | 89.03 | 86.76 23.53 48.86 | 91.28 | 87.15 22.18 49.94 | 91.90
Average 79.70 50.40 4520 | 88.75 | 80.26 41.89 31.08 | 88.18 | 76.64 50.02 4152 | 81.70 | 75.21 46.28 33.79 | 79.26

Image-to-image translation. We leverage ControlNet [47]
to turn our renderings of the shape into realistic images.
Removing this component dramatically reduces accuracy
(Tab. 3, w/o CN) due to the domain gap between our syn-
thetic renderings and the photographs for which Grounded
DINO and SAM have been trained.

Pixel-level segments. We employ an open-vocabulary de-
tection method [27] to predict labeled bounding boxes in
images, and we refine these boxes into pixel-level segments
using SAM [21]. Tab. 3 (w/o SM) shows that accuracy
drops significantly if we omit this last segmentation step,

and instead rely on box-based IoU to evaluate Eq. 1. Bound-
ing boxes only loosely delineate object parts, resulting in
substantial noise in the voting process.

5.3. Comparison with PartSLIP [26]

Given that CAD programs are another type of 3D represen-
tation, our semantic program-commenting task can be con-
sidered a zero-shot, open-set 3D part segmentation problem.
We compare our method with the state-of-the-art zero-shot
3D point cloud segmentation method PartSLIP [26].
Specifically, we convert CADTalk shapes into point

Table 4. Statistical Comparison with PartSLIP (PS) and its vari-
ants. Block accuracy Bqc.. is reported.

CADTalk-Cube
CADTalk-Cube™ CADTalk-Cube®

CADTalk-Ellip
CADTalk-Ellip™ CADTalk-Ellip"

Dataset

Methods | PS | PS++ | Ours PS | PS++ | Ours PS | PS++ | Ours PS | PS++ | Ours
Airplane | 22.04 | 30.07 | 85.03 | 14.51 | 23.31 | 75.65 | 22.84 | 23.88 | 74.78 | 17.83 | 20.61 | 72.52
Chair | 42.04 | 51.01 | 90.02 | 36.82 | 44.90 | 92.28 | 37.97 | 46.40 | 77.66 | 43.00 | 49.12 | 71.41
Table 17.83 | 56.79 | 90.88 | 16.23 | 58.07 | 95.76 | 20.55 | 61.96 | 83.06 | 17.56 | 58.01 | 81.21
Animal | 36.76 | 55.64 | 89.07 | 38.26 | 54.40 | 88.18 | 23.33 | 42.32 | 81.70 | 18.48 | 35.48 | 91.90
Average | 29.67 | 48.38 | 88.75 | 26.46 | 45.17 | 87.97 | 26.17 | 43.64 | 79.30 | 24.22 | 40.80 | 79.26

clouds and feed them to PartSLIP. Since PartSLIP outputs
point-wise labels, we aggregate the point labels back to
the program blocks based on block-point correspondence.
Each block is assigned a label corresponding to most of the
points it contains. Table 4 displays the statistical compar-
ison, where the block accuracy is much lower than ours.
We hypothesize that this performance drop is because Part-
SLIP relies on traditional rendering of the point cloud to
perform visual reasoning, which results in non-realistic im-
ages in our context. Besides, PartSLIP assigns a null label
to points that cannot be semantically recognized. Since null
labels decrease our accuracy metrics, we also implemented
a version that assigns a random label drawn from the list
of ground-truth labels to each code block not recognized by
PartSLIP (Tab. 4, PS++). While this variant achieves higher
metric values, it remains inferior to ours. The same obser-
vation applies to CADTalk-Real (e.g., 78.29% vs. 18.06%
for ours and PS in terms of B,..); our prediction is better.
Please refer to the supplemental.

5.4. Commenting on Machine-made Macros

While the machine-made programs in our dataset exhibit a
flat structure, methods like ShapeCoder [19] can automati-
cally discover abstractions within flat programs to form li-
braries of nested functions. We provide as supplemental
materials an experiment on ShapeCoder programs, showing
that while CADTalker produces comments that convey the
semantic meaning of the functions, these functions some-
times mix several semantic parts since ShapeCoder created
them solely based on geometry.

5.5. Semantic Commenting using ChatGPT

The key idea of CADTalker is to execute and render the
CAD shape to cast program commenting as an image seg-
mentation task. While our evaluation on CADTalk demon-
strates the effectiveness of this image-based strategy, it can
struggle in the presence of small parts and occlusions.
These limitations motivated us to experiment with a
program-based strategy, for which visibility and appearance
are irrelevant. Specifically, inspired by recent successes of
few-shot training of LLMs for code commenting [2, 6], as
well as by ongoing effort on leveraging LLMs to help de-
signers in various tasks [29], we instructed ChatGPT-v4 to
comment on a program given another program with com-
ments as an example. We provide the results of this exper-

iment as supplemental materials, which reveals that Chat-
GPT succeeds in commenting on programs that are similar
to the example (same object category, same geometric prim-
itives) but fails to generalize to new shapes and primitives.

6. Conclusion

In this paper, we have introduced the new problem of se-
mantic commenting of CAD programs and proposed a novel
method, CADTalker, to tackle this problem by combining
program parsing with visual-semantic analysis offered by
recent advances in foundational language and vision mod-
els. We have established an effective baseline for this new
problem. Additionally, we have prepared a new benchmark
dataset — CADTalk — to evaluate the performance of our al-
gorithm and to facilitate future research in this direction.
Limitations. Our current algorithm cannot perform any
non-trivial reordering or restructuring of input CAD pro-
grams. Hence, if an input program is badly written, instead
of simply being badly commented, we cannot improve it
to make it more readable. This leaves out an interesting
optimization axis as even the exact same geometric shape
can have many different programmatic realizations. Our
method can only comment on instructions that produce ge-
ometry, not on instructions that remove geometry (which
we aggregate within irreducible blocks). For example, if a
shape is subtracted from another shape to form a hole, we
cannot comment on the semantic meaning of that hole (as
for the window of the cab of the train in Fig 1). A pos-
sible solution would be to explicitly render the geometry
removed by the subtraction (i.e., for A — B, render AN B).
Finally, the CADTalk-Real track is currently limited to 45
models, which is too little to serve as training data.

Future work. Our early experiments with ChatGPT
(Sec 5.5) suggest that a multi-modality approach (e.g., tak-
ing as input tuples of programs, 2D renderings, and 3D
shapes) is a promising direction for future work as it would
allow reasoning on both the program structure and its visual
output. Also, our ability to populate flat machine-generated
programs with comments could benefit analysis of these
programs, for instance, to account for both the geometry
and semantics of the shape when searching for program ab-
stractions [18, 19]. Finally, we would also like to assign
meaningful labels to the program parameters to make it eas-
ier for human users to edit the programs (e.g., renaming the
variable that controls how tall a chair back is to ‘height’).
Vision models capable of reasoning about differences be-
tween images [35] or semantic 3D features [1 1] might help.
Acknowledgments. We thank Algot Runeman for his
OpenSCAD programs. CJ was supported by a startup grant
from the School of Informatics, Bayes Seed funding, and
gifts from Google Cloud research credits. NM was sup-
ported by Marie Sklodowska-Curie grant agreement No.
956585 and UCL Al Centre.

http://runeman.org/3d/

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov,
and Peter Wonka. Satr: Zero-shot semantic segmentation of
3d shapes. arXiv preprint arXiv:2304.04909, 2023. 3
Toufique Ahmed and Premkumar Devanbu. Few-shot train-
ing llms for project-specific code-summarization. In Proc.
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2023. 3, 8, 1

Algot Runeman. OpenSCAD 3D Central.
runeman.org/3d/,2023. 2,5

Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generat-
ing sequences from structured representations of code. In In-
ternational Conference on Learning Representations (ICLR),
2019. 3

Felix W Baumann and Dieter Roller. Thingiverse: review
and analysis of available files. International Journal of Rapid
Manufacturing, 7(1):83-99, 2018. 2, 5

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020. 3, 8, 1

Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp,
and Kangxue Yin. Texfusion: Synthesizing 3d textures with
text-guided image diffusion models. In Proc. IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2023.
4

D. Cascaval, M. Shalah, P. Quinn, R. Bodik, M. Agrawala,
and A. Schulz. Differentiable 3d cad programs for bidirec-
tional editing. Computer Graphics Forum (Proc. EURO-
GRAPHICS), 41(2), 2022. 2

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde de Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex
Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,
William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N. Carr,
Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Mu-
rati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code,
2021. 3

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and

http://

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

Wojciech Matusik. Inversecsg: Automatic conversion of 3d
models to csg trees. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia), 37(6):1-16, 2018. 2

Niladri Shekhar Dutt, Sanjeev Muralikrishnan, and Niloy J.
Mitra. Diftusion 3d features (diff3f): Decorating untextured
shapes with distilled semantic features. In CVPR, 2024. 3, 8
Github Authors. Lark - a parsing toolkit for Python. https:
//github.com/lark-parser/lark,2017. 5

Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian
Marcus. On the use of automated text summarization tech-
niques for summarizing source code. In Proc. Working Con-
ference on Reverse Engineering. IEEE Computer Society,
2010. 3

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: A network
with an edge. ACM Transactions on Graphics (Proc. SIG-
GRAPH), 38(4), 2019. 3

Robert M Haralick, Stanley R Sternberg, and Xinhua
Zhuang. Image analysis using mathematical morphology.
IEEE transactions on pattern analysis and machine intelli-
gence, (4):532-550, 1987. 4

Srinivasan Iyer, loannis Konstas, Alvin Cheung, and Luke
Zettlemoyer. Summarizing source code using a neural atten-
tion model. In Proc. Annual Meeting of the Association for
Computational Linguistics. Association for Computational
Linguistics, 2016. 3

R Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang,
Ellen Jiang, Paul Guerrero, Niloy J Mitra, and Daniel
Ritchie. Shapeassembly: Learning to generate programs for
3d shape structure synthesis. ACM Transactions on Graphics
(TOG), 39(6):1-20, 2020. 2, 5

R Kenny Jones, David Charatan, Paul Guerrero, Niloy J Mi-
tra, and Daniel Ritchie. Shapemod: macro operation discov-
ery for 3d shape programs. ACM Transactions on Graphics
(TOG), 40(4):1-16, 2021. 5, 8

R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel
Ritchie. Shapecoder: Discovering abstractions for visual
programs from unstructured primitives. arXiv preprint
arXiv:2305.05661,2023. 2,5, 8, 1

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji,
and Siddhartha Chaudhuri. 3D shape segmentation with pro-
jective convolutional networks. In Proc. IEEE Computer Vi-
sion and Pattern Recognition (CVPR), 2017. 3

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 3,4,7,5
Milin Kodnongbua, Benjamin T. Jones, Maaz Bin Safeer Ah-
mad, Vladimir G. Kim, and Adriana Schulz. Reparamcad:
Zero-shot cad re-parameterization for interactive manipula-
tion. In SIGGRAPH Asia (Conference track), 2023. 2
Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra.
Free2cad: Parsing freehand drawings into cad commands.
ACM Transactions on Graphics (Proc. SIGGRAPH), 41(4),
2022. 2

Liunian Harold Li*, Pengchuan Zhang*, Haotian Zhang*,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu

http://runeman.org/3d/
http://runeman.org/3d/
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and
Jianfeng Gao. Grounded language-image pre-training. In
Proc. IEEE/CVF conference on computer vision and pattern
recognition (CVPR), 2022. 3

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan
Zhao, Hang Zhang, Peizhao Zhang, Peter Vajda, and Diana
Marculescu. Open-vocabulary semantic segmentation with
mask-adapted clip. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7061-7070, 2023. 3

Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan
Ling, Fatih Porikli, and Hao Su. Partslip: Low-shot part seg-
mentation for 3d point clouds via pretrained image-language
models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21736—
21746, 2023. 2,3,7

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499,2023. 3,4,7,5

Weixiao Liu, Yuwei Wu, Sipu Ruan, and Gregory S
Chirikjian. Marching-primitives: Shape abstraction from
signed distance function. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8771-8780, 2023. 2, 6

Liane Makatura, Michael Foshey, Bohan Wang, Felix
HihnLein, Pingchuan Ma, Bolei Deng, Megan Tjandra-
suwita, Andrew Spielberg, Crystal Elaine Owens, Pe-
ter Yichen Chen, Allan Zhao, Amy Zhu, Wil J Norton, Ed-
ward Gu, Joshua Jacob, Yifei Li, Adriana Schulz, and Woj-
ciech Matusik. How can large language models help humans
in design and manufacturing?, 2023. 8

Marius Kintel. OpenSCAD. https://openscad.org/
index.html, 2023. 4,5

Elie Michel and Tamy Boubekeur. Dag amendment for in-
verse control of parametric shapes. ACM Transactions on
Graphics (Proc. SSIGGRAPH), 40(4), 2021. 2

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna
Tripathi, Leonidas J Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3d object understanding. In Proc. IEEE/CVF conference
on computer vision and pattern recognition (CVPR), pages
909-918, 2019. 6

Chandrakana Nandi, Max Willsey, Adam Anderson,
James R. Wilcox, Eva Darulova, Dan Grossman, and
Zachary Tatlock. Synthesizing structured cad models with
equality saturation and inverse transformations. In Proc.
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2020. 2

OpenAl. ChatGPT (v4, June 13 version) [Large language
model]. https://chat.openai.com,2023. 4,5
Dong Huk Park, Trevor Darrell, and Anna Rohrbach. Ro-
bust change captioning. In Proc. IEEE/CVF International
Conference on Computer Vision (ICCV), 2019. 8

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

and segmentation. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proc. Interna-
tional Conference on Machine Learning, pages 87488763,
2021. 3

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. In ACM SIGGRAPH Conference Proceedings, 2023.
4

Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J.
Mitra, Adriana Schulz, Karl D. D. Willis, and Jiajun Wu.
Neurosymbolic Models for Computer Graphics. Computer
Graphics Forum, 2023. 2,5

Gopal Sharma, Kangxue Yin, Subhransu Maji, Evangelos
Kalogerakis, Or Litany, and Sanja Fidler. Mvdecor: Multi-
view dense correspondence learning for fine-grained 3d seg-
mentation. In ECCV, 2022. 3

Chun-Yu Sun, Qian-Fang Zou, Xin Tong, and Yang Liu.
Learning adaptive hierarchical cuboid abstractions of 3d
shape collections. ACM Transactions on Graphics (TOG),
38(6):1-13,2019. 2,5, 6

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn: Octree-based convolutional neu-
ral networks for 3d shape analysis. ACM Transactions on
Graphics (Proc. SIGGRAPH), 36(4), 2017. 3

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao
Du, Joseph G. Lambourne, Armando Solar-Lezama, and
Wojciech Matusik. Fusion 360 gallery: A dataset and en-
vironment for programmatic cad construction from human
design sequences. ACM Transactions on Graphics (Proc.
SIGGRAPH), 40(4), 2021. 2,5

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A
deep generative network for computer-aided design models.
In Proc. IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 2,5

Xiang Xu, Pradeep Kumar Jayaraman, Joseph G. Lam-
bourne, Karl D.D. Willis, and Yasutaka Furukawa. Hier-
archical neural coding for controllable cad model genera-
tion. In Proc. International Conference on Machine Learn-
ing (ICML), 2023. 2

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi,
Hooman Shayani, Ali Mahdavi-Amiri, and Hao Zhang.
Capri-net: Learning compact cad shapes with adaptive prim-
itive assembly. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 2

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proc. IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 3836-3847, 2023. 3,4, 6,7

https://openscad.org/index.html
https://openscad.org/index.html
https://chat.openai.com

CADTalk: An Algorithm and Benchmark for Semantic Commenting
of CAD Programs

Supplementary Material

7. Additional Results
7.1. Commenting on ShapeCoder [19] Programs

While the machine-made programs in our dataset exhibit a
flat structure, methods like ShapeCoder [19] can automati-
cally discover abstractions within flat programs to form li-
braries of nested functions. We have tested CADTalker on
the abstracted shape programs from ShapeCoder.

Data processing and running. Since ShapeCoder only
provides a simple executor that produces line renderings
(Fig. 6 (a)), we resort to OpenSCAD as an alternative ex-
ecutor to obtain 3D shapes suitable for depth map rendering.
Specifically, as shown in Fig. 6, for each ShapeCoder pro-
gram, we first use its default executor to transform the pro-
gram into cuboid primitives represented by a set of param-
eters (e.g., height, width, and translation). We then trans-
late these cuboid primitives into an OpenSCAD program,
which can be executed to get the required depth map. After
the translation, each line of the ShapeCoder program cor-
responds to one or more OpenSCAD code lines. We run
CADTalker to generate the semantic comment for each line
and aggregate these comments for each ShapeCoder line by
a simple non-repetitive merging. We transfer the semantic
comments back to the ShapeCoder program by exploiting
the recorded program line and code block correspondence.
Results. Fig. 7 (a) shows typical results of our algorithm on
programs produced by ShapeCoder. While our comments
convey the semantic meaning of the ShapeCoder functions,
they also reveal that because the ShapeCoder algorithm
solely works on geometry, it produces functions that mix se-
mantic parts (Fig. 7 (b)). This experiment suggests that au-
tomatic commenting could serve as a way to evaluate the se-
mantic coherence of automatically generated code macros.

7.2. Semantic Commenting using ChatGPT

The key idea of the algorithm we have proposed —
CADTalker- is to execute and render the CAD shape to cast
program commenting as an image segmentation task. While
our evaluation on CADTalk demonstrates the effectiveness
of this image-based strategy, it has some limitations. First,
object parts can be occluded in most of the views, and as
such do not get labeled. Similarly, small parts that only
cover a few pixels tend to be ignored. Second, while our
use of image-to-image translation greatly reduces the do-
main gap between renderings and photographs, the images
we obtain might still contain unrealistic details that are dif-
ficult to recognize.

Table 5. Different configurations when interacting with GPT-4 to
comment on a cuboid airplane program. Each row (b-e) corre-
sponds to a different commented example provided to GPT-4 for
one-shot training.

Option | Teach | Example Program | Bace(1)
a X X 31.88
b v | Airplane®¥?® (partial) | 52.5
c v Airplane®!p 37.5
d v Airplane©“be 87.5
e v | Chair®ube 44.37

These limitations motivated us to also experiment with a
program-based strategy, for which visibility and appearance
are irrelevant. Specifically, inspired by recent successes of
few-shot training of LLMs for code commenting [2, 6], we
instructed ChatGPT-v4 to comment on an airplane program
from our CADTalk-Cube dataset. In addition to the program
to be commented on, we also provided ChatGPT with the
list of part names (i.e., ’body’, wings’, ’tail’, and "engine’),
as illustrated in Fig. 8, top row.

Within this setup, we tested five different configurations
of the commenting task, as listed Tab. 5 where the super-
script indicates the source of the example program.

* Option (a): zero-shot prediction, no additional informa-
tion is provided to ChatGPT.

* Option (b): one-shot prediction, the example is incom-
plete and comes from the same airplane category in
CADTalk-Cube.

* Option (c): one-shot prediction, the example is com-
plete but made of different primitives (i.e., ellipsoid) from
CADTalk-Ellip.

* option (d): one-shot prediction, the example is complete
and comes from the same airplane category in CADTalk-
Cube.

* option (e): one-shot prediction, the example is complete
but from the chair category in CADTalk-Cube.

In all cases, we shuffle the code blocks of both the task

program and the example program to avoid any influence

of ordering. This experiment reveals that, to our surprise,

a single example is enough for ChatGPT to successfully

comment programs that represent the same object category,

with the same geometric primitives (configuration d). When
asked to explain its answer, ChatGPT reported using the
volume and relative position of the parts as evidence, such

$vpf=10;

color([1.0,0,0])
translate([0,0.74,-0.22])
rotate([90.0, 0.0, 0.0])

cube([0.68,0.24,0.09] , center=true);
color([1.0,0,0])
translate([0,-0.17,0.05])
rotate([90.0, 0.0, 0.0])

color([0,0,1.01) (C)
translate([-0.34,-0.47,0.3])
rotate([90.0, 0.0, 0.0])
cube([0.06,0.06,0.6],center=true);
color([0,0,1.0])

translate([0.34,-0.47,0.3])
rotate([90.0, 0.0, 0.0])
cube([0.06,0.06,0.6],center=true);
color([0,0,1.0])

translate([-0.34,-0.47,-0.17])
rotate([90.0, 0.0, 0.0])

cube([0.06,0.06,0.63],center=true);
color([0,0,1.0])

translate([0.34,-0.47,-0.17])
rotate([90.0, 0.0, 0.0])
cube([0.06,0.06,0.63],center=true);

|Union(Abs_lB(@.68,0.09,0.24,0.74} (@)
0.14,-0.17)

[Union(Abs_lS(@.@G,O.G,@.3.-0.17)

ot

Move(SymTrans(Cuboi1d(@.08.0.79.0
08)2*.0.31 -0.26.0.27.-0.18),

Move(Symirans(Cuboid0.08,0.79,0.0
8), AX,INT#1#,0.14),0.14,0.27,-
0.25)))

D)

(d)
—> (CADTalker

(b) color([e,1,0])
translate([-0.26,0.27,-0.18])
[(0.68, 0.09, 0.24, -0.04, 0.74, -0.22, 0.0, 0.0, 0.0), rotate([90.9, 0.8, 0.01)
(0.68, 0.14, 0.68, -0.04, -0.17, 0.05, 0.0, 0.0, 0.0)] Cube([0:98.0.08,0.79], center=true);

translate([-0.11,0.27,-0.18])

rotate([90.0, 0.0, 0.0])
— cube([0.08,0.08,0.79],center=true);
color([e,1,0])

translate([0.05,0.27,-0.18])
rotate([90.0, 0.0, 0.0])

cube([0.08,0.08,0.79] ,center=true);

.6, 0.06, -0.34, -0.47, 0.3, 0.0, 0.0, 0.0),
6, 0.06, 0.34, -0.47, 0.3, 0.0, 0.0, 0.0),
63, 0.06, -0.34, -0.47, -0.17, 0.0, 0.0, 0.0)
63, 0.06, 0.34, -0.47, -0.17, 0.0, 0.0, 0.0)]

~
S
S
o

SRS ISESES ISESESES [(SES]

(0.08, 0.79, 0.08, -0.26, 0.27, -0.18, 0.0, 0.0, 0.0), color([1.0,1,01)

(0.08, 79, 0.08, -0.11, 0.27, -0.18, 0.0, 0.0, 0.0), ?;:ﬂ?ﬁ;%'%'?ngﬁzﬂ’

(0.08, ©.79, 0.08, 0.05, 0.27, -0.18, 0.0, 0.0, 0.0)] rotatel[90.0, 0., 0.01) | erue);
color([1.0,1,0])

[(0.08, 0.79, 0.08, 0.14, 0.27, -0.25, 0.0, 0.0, 0.0), transtate([0.28,0.27,-0.251)

(0.08, 0.79, 0.08, 0.28, 0.27, -0.25, 0.0, 0.0, 0.0)] cube([0.98,0.08,0.79] , center=true) ;

Figure 6. ShapeCoder Program Processing. Given a ShapeCoder program (a), we first execute the program to obtain all primitive
parameters, i.e., a set of cubes represented by width, height, length, rotation, and translation (b). Then, we translate these primitives into
an OpenSCAD program (c) and run our CADTalker (d). The colorful boxes indicate the line-parameter-code block correspondence.

Union(Abs_19(0.68,0.09,0.24,0.74,
Q.14 -0
Union(Abs_18(0.06,0.6,0.3.-0.17)
nion
Move(SymTrans(Cuboi1d(@.08.0.79.0.
08)2%.0.31 -0.26.0.27.-0.18),
//label :back
Move(Symirans(Cubo1d®@.08,0.79,0.0
8), AX,INT#1#,0.14),0.14,0.27,-
0.25)))
)

//label: leg, back E\ Data a:

ymRef(Union(Abs_1(0.04,0.99,- Abs_19(0.68,0.09,0.24,0.74,0.09,-0.17)

0.26,0.42),Union(Abs_1(0.03,6.7,0.3,- = oy i8Go.06,0.6,-007,0 7N
9.56 A0 0.05,0.79,-0.3,-0.52))),AX) Absio(e.és 0.79,0.0,0.27 -0.25)
//label: seat Abs_5(0.08,6.79,-0.14,0.27,-0.25)
RB5_6(0. 69,0 1%, ~0.15) Abs_2(0.08,0.79,0.08,0.28,0.27,-0.25)
//1label: back

X fos10

MOVe(SymTra ubotd(0.62,0.01,0.1),AY,IN
TH#5#,0.42),0.02,0.43,-0.26)

//label: back
Move(SymRef(Move(Cuboid(@.62,0.01,0.1),0.
02,-0.15,0.01),AY),0.0,0.71,-0.27)

(Union
(Abs_10 V_F.

0_ V_F_1_ (Add (Sub V_F_0_ 1.0) V_F_1.) V_F_2_ AX)
(Abs_10 V_F_0_ (Add(Div V_F_8_ 2.8) V_F_1.)(Add(Sub V_F_6_
[1-0V_F_1) V_F3_ A0)

Data b:
Abs_11(1.12,0.2,0.21,0.71,-0.31)
Abs_12(0.08,0.55,0.4,-0.54,AX)
//predict label: seat and back
Abz_ze(e.95,e.11,a.7a) / ¢
Move(

Abs_10(0.08,0.78,0.08,-0.31,AX),
0.29,0.68,0.0

//1abel: back, leg

nionCAb 0.88,0.31,0.35)

77,-0.18)

)

62,0.33,-0.29) 9,-0.16)

//label: seat labs_20:
(Union

(Abs_6 V_F_8_ V_F_1_ (Sub (Sub V_F_8_ 1.8) V_F_1.))

(Move (SymTrans (Cuboid V_F_1_. V_F_2_ V_F_1.) AX INT#2#

i ubo1d(0.74,0.07,0.
86),AX, INT#1#,0.01),0.0, -
0.06,0.0)))

YHiRE TT5;0752,-0.37,-0.51),AX)))

(a) (b)
Figure 7. (a) Four typical commenting results on ShapeCoder programs with colored boxes indicating the comment-shape correspondence.
(b) ShapeCoder [19] identifies redundancy in shape datasets to generate code macros (red blocks) that encapsulate common parts. While
our approach produces descriptive comments for these macros (blue comments), the macros themselves do not always correspond to
isolated semantic parts (bottom blue comments).

as the fact that the body should have the biggest volume,
while the wings should be attached on the two sides of the
body ! However, the other configurations (b,c,e) reveal that
these spatial reasoning skills do not extend to examples that
are incomplete, of another category, or made of different
primitives. A small-scale statistical evaluation of these con-

'GPT is trained to produce the next word given the prompt, we are not
sure if it effectively used volume and positions to solve the task. It is an
interesting research direction to reveal the mechanisms of GPT.

figurations with 10 testing examples is reported in Tab. 5,
which is consistent with the above analysis and the visual
results in Fig. 8, where the configuration (d) achieves the
best result.

The full conversations with ChatGPT-v4 can be found in
a separate file titled “GPT-Conversation.pdf” on the project

page.

Table 6. Statistical Comparison with PartSLIP and its variants.

Dataset CADTalk-Cube CADTalk-Ellip
CADTalk-Cube' ‘ CADTalk-Cube” CADTalk-Ellip" ‘ CADTalk-Ellip"
Methods PS PS++ Ours PS PS++ Ours PS PS++ Ours PS PS++ Ours
Metric | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stov | Bace | Stou | Bace | Stou | Bace | Stov | Bace | Srov ‘ Bace | Srov | Bace | Srtov | Bace | Srou
Chair 62.81 | 59.74 | 64.51 | 59.35 | 90.02 | 84.34 | 74.24 | 60.29 | 74.90 | 59.60 92.28 | 91.11 | 64.92 | 57.46 | 64.94 | 57.20 77.66 | 71.29 66.86 | 52.23 | 67.54 | 51.99 | 71.41 | 57.95
Airplane | 21.94 | 9.76 | 29.36 | 11.94 | 85.03 | 77.76 | 14.40 | 8.01 2271 | 12.24 75.65 | 68.40 | 23.16 | 895 | 25.15 | 984 7478 | 65.77 19.74 | 8.56 | 23.99 | 10.40 | 72.52 | 69.90
Animal 41.94 | 32.26 | 59.07 | 34.65 | 89.07 | 82.75 44.69 | 41.70 | 55.55 | 4447 89.03 | 85.68 | 33.96 | 25.54 | 44.12 | 29.71 91.28 | 83.14 29.96 | 24.37 | 42.94 | 25.86 | 91.90 | 86.08
Table 40.90 | 33.43 | 64.98 | 49.64 | 90.88 | 86.33 | 37.60 | 27.55 | 65.61 | 49.50 95.76 | 93.50 | 38.38 | 35.02 | 63.34 | 45.09 83.06 | 74.71 43.05 | 32.04 | 61.38 | 53.66 | 81.21 | 75.76
Average | 41.90 | 33.80 | 54.48 | 38.89 | 88.75 | 82.80 | 42.73 | 3439 | 54.69 | 41.45 88.18 | 84.67 | 40.10 | 31.74 | 49.39 | 3546 81.69 | 73.73 39.9 | 29.30 | 48.96 | 35.48 | 79.26 | 72.42

: The Pollowing code describes o model airplane.

The airplane is consist of four parts, namely wing, body, tail, and

Please annotate the following code to classify every code Llock. Blocx is defined with the ‘code’ sentence.

Example:
$vpf=10;
//gt label: body
translate([11.00442335009575, -1.599965589120984 -0 . 00804058101149387061)
rotate([-179.830 0150071)
cube([15.20406857132912, 3.00032537430525,2. 7],center=true);

&7

1713, -0.1520083991795526, —0.370

translate([0.16497560660354793,~3. 9487890154123306, 3. 8413323089480405])
rotate([167.5062758456813, 83.53026105728806, -102.1632179658u371)
cube([4.192828088998795, 2. 3708329163491735, 0. 8533036196604387] , center=true);
translate([3.5951648280024533, -4 . 504960626363754, ~3.96382514387369161)
rotate([-177.33952817471692, -83. 7, 83.71! 71)
cube([4.38; 4, 3.589124; 5], center=true);

,1.46

 Here is ‘the answer,
//gt label: wing
translate([0.16497560660354793, -3 . 9487890154123306, 3. 84133230894804051)
rotate([167.5062758456813, 83.53026105728806, -102.16321796581371)
cube([4.192828088998795, 2.3708329163491735, 0. 8533036196604387] , center=true) ;

//gt label: engine
translate([3.5951648280021533, u 504960626363754, -3 9638251”38736916])
rotate([-177.33952817471692,

cube([4.381989985704424, 3. 5391 0

530597, 1.46 751, center=" uue)'

I

W wing O body I Engine B tail W unsure

Figure 8. ChatGPT commenting results under different configura-
tions.

7.3. Comparison with PartSLIP

In Sec. 5.3, we have described the comparison with Part-
SLIP regarding block accuracy. Here, we elaborate on the
details and provide more statistical and visual results.

Data processing and running. Taking as input a dense
and colored 3D point cloud and part names as prompts,
PartSLIP predicts point-wise labels belonging to the part
names. To compare, we first execute each program from
CADTalk to obtain a 3D model and densely sample it with
200K points with normal and a uniform gray color (see
Fig. 9, PartSLIP Input). As for the point-based rendering,

we implemented a simple Phong shading” to produce the
images fed to PartSLIP. In the sampling process, we record
the point-block correspondence for label transferring using
a similar binary mask based registration procedure as de-
scribed in Sec. 3.3. This resulting point cloud is fed into
PartSLIP to obtain point-wise labels. We then aggregate
the point-wise labels of each commentable block by choos-
ing the label with the highest number of votes and simply
transfer the resulting label back to the shape program as the
predicted comments.

Results. Full statistics with both the block accuracy (Byc.)
and the semantic IoU (S7,) are shown in Tab. 6, where we
obtain far better results compared with PartSLIP and Part-
SLIP++. As for the human-made program, the block ac-
curacy for PartSLIP, PartSLIP++, and ours are 38.17% vs.
39.24% vs. 78.29%, while the semantic IoUs are 27.25%,
and 27.73%, and 66.22%, respectively. Visual Results can
be found in Fig. 9. PartSLIP fails this zero-shot point cloud
segmentation task on both machine-made and human-made
programs in our context. This is mainly attributed to Part-
SLIP’s strong dependency on point clouds that incorporate
realistic colors, a feature frequently absent in program rep-
resentations. This failure is further evidenced in our abla-
tion study, wherein the exclusion of ControlNet (w/o CN)
results in notably reduced evaluation metrics.

7.4. Comparison with SATR

As discussed in Sec. 2 and Sec. 5.3, our task can be con-
sidered as a zero-shot, open-set 3D part segmentation prob-
lem. Other than PartSLIP, we preliminarily compare our
method with SATR [1], the state-of-the-art zero-shot 3D
mesh segmentation method. Qualitative results are shown
in Fig. 10, where mesh segmentations are competitive on
the realistic horse, but SATR struggles on the more ab-
stracted Moai sculpture and fails on the abstracted airplane.
The reason is the gap between the rendered images from

2The original PartSLIP code for point-based rendering does not apply
any shading because it assumes that the input point cloud is a 3D colored
scan. We replaced that code with our simple Phong shading. Some num-
bers reported in Tab. 4 of our submission were computed with the original
rendering, which resulted in a lower performance. Nevertheless, even with
better shading, PartSLIP’s results are far inferior to ours. We will revise
the numbers upon acceptance.

PartSLIP Prediction

PartSLIP Input

W none

M none B wing

CADTalker

PartSLIP Voting

M head M beak @ body [1eyes B wing E tail

¢~ ~F

B body H tail

B engine

Figure 9. Visual Comparison with PartSLIP. Due to the absence of realistic colors, the raw prediction of the per-point label is noisy,
leaning toward missing many points (the black color). After the label aggregation, errors are still obvious, e.g., the tail and most of the
body of the airplane are mislabeled, while the head, beak, and eyes of the bird are totally wrong.

Figure 10. Visual Comparison with SATR. The first row shows
the results from SATR, while our results are in the second row.

abstracted shapes and the photographs used for training
the large image-language model, while ControlNet in our
pipeline solves this problem effectively.

7.5. OpenLLM Model Test

Our pipeline is highly modular and not restricted to GPT4,
we thus test our algorithm with the open-source Llama2-
70B model. Statistical results are displayed in Table 7,
where performance degradation is observed. For exam-
ple, with Llama2-70B, the By, is dropped from 88.75%
to 82.96% and S,y is dropped from 82.75% to 75.43% on
CADTalk-Cube™ programs. As for the real human-made
programs in CADTalk-Real, Llama2-70B achieves 70.88%
and 57.97% for block accuracy and semantic IoU, which
are reduced by 7.4% and 8.3% compared with GPT-4 (i.e.,
78.29% and 66.22%, respectively). Once a more powerful
LLM is available, our method can enjoy the improvement

without any special tunning.
7.6. Additional Commenting Results

Typical commenting results can be seen on the accom-
panying webpage with highlighted code and block an-
imations, and more commenting results from all data
tracks in CADTalk can be found in a separate file titled
“Commenting-Results.pdf” on the project page. In the fol-
lowing, we introduce typical failure cases.

Failure cases. In Fig. 11, we illustrate typical failure cases
of our method, which are mainly inherited from founda-
tional vision-language models, i.e., ControlNet may ignore
fine details of the input depth map or generate totally un-
recognizable images, and Grounding DINO may mislabel
parts that can be seen clearly in the image.

To address these issues, potential solutions include a) uti-
lizing stronger vision-language models with enhanced con-
ditional generation ability, and more robust detection abil-
ity and b) implementing an image discriminator to exclude
problematic images, which we leave for future work.

8. Method Details
8.1. Implementation Details

For depth map processing, we use morphological closing
[15] with varied configurations. Specifically, we apply 5
iterations of closing for the abstract shapes of CADTalk-
Cube™ and CADTalk-Ellip¥, 3 iterations for CADTalk-
Cube™ and CADTalk-Ellip™, and 1 iteration for CADTalk-
Real, using a 3 x 3 structuring element. When using Con-
trolNet [47], we set the control strength to 1.0, DDIM sam-

Table 7. Comparison between GPT words and LLAMA?2 words on the full dataset.

Dataset CADTalk-Cube CADTulk-Ellip
CADTalk-Cube™ CADTalk-Cube® CADTalk-Ellip" CADTalk-Ellip®
Input Text | GPT Words LLAMA?2 Words GPT Words LLAMA?2 Words GPT Words | LLAMA2 Words GPT Words | LLAMA2 Words
Metric | Bace | StoU | Bace | Siov Bace | Stov | Bace | Srtou Bace | Stov | Bace | Srtou Bace | Stov | Bace | Srtou
Airplane (4 parts) | 85.03 | 77.76 | 85.71 | 78.28 75.65 | 68.40 | 77.32 | 71.51 7478 | 6577 | 7743 | 71.19 72.52 | 6590 | 75.90 | 70.66
Chair (4 parts) | 90.02 | 84.34 | 87.18 | 77.33 92.28 | 91.11 | 9147 | 88.11 77.66 | 71.29 | 7549 | 68.56 71.41 | 5795 | 68.99 | 5530
Table (2 parts) | 90.88 | 86.33 | 80.71 | 73.47 95.76 | 93.50 | 88.19 | 79.96 83.06 | 74.71 | 7435 | 61.27 81.21 | 75.76 | 7823 | 67.11
Animal (4 parts) | 89.07 | 82.55 | 78.26 | 72.65 89.03 | 85.68 | 86.82 | 86.46 91.28 | 83.14 | 75.19 | 74.85 91.90 | 86.08 | 71.05 | 70.29
Average | 88.75 | 82.75 | 82.96 | 7543 88.18 | 84.76 | 85.95 | 81.51 81.70 | 73.73 | 75.62 | 68.97 79.26 | 71.42 | 7454 | 65.84

) ©

Figure 11. Failure Cases. (a) ControlNet fails to generate scarf tassels. (b) ControlNet generates an unexpected image given a turkey
depth map and keyword, as if it confused “turkey” (bird) with “Turkey” (country). (c¢) Grounding DINO wrongly predicts the broom to be

‘head’.

pling steps to 20, the image instance number to 4, and
the image resolution to 512 x 512. We use a simple text
prompt template — “[CateName], realistic” for ControlNet,
where [CateName] is the category name, e.g., Chair. We
employ default parameter configurations from Grounding
DINO [27] and SAM [21] without additional adjustments or
tuning. For our voting scheme, we render depth maps from
10 viewpoints that are evenly distributed around a circular
path centering on the object’s up axis and maintaining an el-
evation angle of 55 degrees above the object. When filling
in the cumulative confidence score, we progressively ad-
just the filtering threshold in the aforementioned three steps
(Sec. 3.3), setting it at 0.001, 0.01, and 0.02, respectively.
Running Time. All experiments were conducted with a
single RTX3090 GPU. Using our unoptimized code, for a
program with 200 lines, the overall running time is around
6mins, distributed as 0.2% for program parsing, 1.1% for
depth images rendering, 85.1% for ControlNet, 0.7% for
prompt querying, 12.5% for DINO+SAM and 0.3% for vot-
ing.

8.2. Program Parsing

In Sec. 3.3, we introduced program parsing that produces
an Abstract Syntax Tree (AST), laying the foundation for
our commenting task. To do this, we exploit Lark [12] to
conduct lexical and syntax analysis following the Open-

SCAD grammar, and the analysis procedure generates an
analysis tree, which is equivalent to the original program
and wherein all the operation information is stored in the
node and the code structure is maintained in the tree struc-
ture. Then, we construct the AST by traversing the analysis
tree, and choose the required information, i.e., node type
and line number, from the tree node. Example AST of a
simple program is shown in Fig. 14, and more trees of pro-
grams in CADTalk can be found in the file titled “AST.pdf”
on the project page.

9. CADTalk Dataset
9.1. Dataset Overview

To facilitate evaluation and foster future research on the
semantic CAD program commenting task, we have intro-
duced a new benchmark — CADTalk, a dataset of Open-
SCAD programs enriched with part-based semantic com-
ments. Tab. 8 shows detailed statistics per category of each
data track, including the number of code lines, and the num-
ber of parts.

We considered two distinct sources of programs, i.e.,
human-made and machine-made programs, in our dataset.
Since it is difficult to find and manually comment on real
shape programs, we only gathered 45 such programs with
rich shape and program diversity and we plan to keep col-

lecting more in the future. For machine-made programs,
we rely on automatic methods that convert 3D shapes into
cuboid [41] and ellipsoid [28]. One feature of this data track
is the two levels of details of the programs, where the ones
with a high level of detail reconstruct the shape well but
have more lines to comment on, while the others with a low
level of detail are harder to recognize due to the abstraction.
See Fig. 12 for an example.

87 |

Figure 12. Shape abstraction levels. A chair in CADTalk-Ellip
with different numbers of ellipsoids.

Table 8. Detailed CADTalk Statistics. The number of programs,
lines of code, and the number of parts per category for each data
track are listed.

‘ Category ‘ #Programs ‘ #Lines (min, median, max) ‘ #Parts

airplane 400 (40, 40, 40) 4
CADTolkCubel | AT 400 (66, 66, 66) 4
table 400 (21,21,21) 2
animal 122 (40, 40, 40) 4
airplane 400 (72,72,72) 4
CADTulkCubet | AT 400 (162, 162, 162) 4
table 400 (61, 61,61) 2
animal 122 (72,72, 72) 4
airplane 400 (37, 100, 242) 4
CADTulk-Ellip" chair 400 (27, 147, 672) 4
table 400 (7,101, 1077) 2
animal 122 (62, 112, 166) 4
airplane 400 (32,163, 237) 4
bty | M 400 (57,261, 842) 4
table 400 (27,178, 1172) 2
animal 122 (27, 152, 245) 4
CADTulk-Real | real | 45 (28, 120, 381) 2-10

9.2. Evaluation Metrics

We have proposed two metrics to evaluate the performance

of algorithms on the new task of commenting CAD pro-

grams. In the following, we introduce the formulations to

calculate them.

* Block accuracy is the block-wise labeling accuracy, de-
fined as:

Bacc = (2)

where m counts the number of blocks that get the correct
label and n is the total number of blocks.

e Semantic IoU measures the Intersection-over-Union
value per semantic label, averaged over all labels:

{le} N {lE}
Stov = KZ {l:}u{l 3)

where K is the number of labels, {i} is the set of code
blocks predicted to be of the k'™ label, {I;} is the set of
code blocks with the k%" label as ground truth.

9.3. Machine-made Program Processing

Given machine-generated shape primitives of ShapeNet
models, we turn them into OpenSCAD programs and then
conduct automatic labeling and manual refinement.
Program Translation. Given the cube or ellipsoid primi-
tives represented by corresponding parameters, we trivially
translate these primitives into OpenSCAD cube or ellipsoid
primitives, following the same procedure as described in
Fig. 6. Specifically, we translate a cube represented by its
eight corners into the native cube primitive in OpenSCAD,
while we translate an ellipsoid presented by its semi-axe
lengths, rotation, and translation parameters into the native
ellipsoid primitive in OpenSCAD.

Automatic Labels Transferring. Since cubes or ellipsoids
are generated based on 3D models from PartNet, the exist-
ing part labels in PartNet can be utilized for part label as-
signment. Specifically, given a shape program, we first con-
vert the corresponding PartNet shape into a point cloud with
per-point labels. We then compare the part shape generated
by each code block to the labeled point cloud by checking
the IoU, and obtain the corresponding part label by maxi-
mum voting. For a part, e.g., the airplane engine, it may
occupy both the wing and engine areas, we thus keep all
valid labels in the voting.

Label Refinement with a Developed UI. For further re-
finement of the automatically generated labels, we also de-
veloped an interactive UI (Fig. 13) to directly review and
adjust labeled programs in CADTalk by simple mouse click-
ing and keyboard hitting.

id: 6. label: wing

Choose Files | 400 files
o1

Svpf=10;
Jigtlal y
color([0.832994562692686.0.00840958«
translate([3.1180534698069096,-2.4010
rotate([89.64990470944257,
-0.12175487577762106,
-0.9554021632202875])
cube([30.387782454490665 4. 29443761
Jigt label: tail
color([1.00.50.0])
translate(([-15.800148844718933,1.2916
rotate([177.9739741315627,
-1.502177810090334,
-55.15065451143329])
cube([8.262170851230621 3 90831075¢
Jigt label: wing
color([0.01648220249221255.0.626268(
translate([3.5263698175549507.-1.5767
rotate([-161.4573180345449,
-79.25417183996787,
57.45063059087617])
cube([7.19767458736897.6 5590896825
gt label: wing
<olor([0.00.0,1.0])
translate([1.3061624951660633 -0.8868
rotate([-70.67002271680099,
74.58483953896659,
14.431876011984228)
cube([10.466196089982988.2.2626117¢
Jigt label: tail
color([0.5,1.00.5])
translate([-18.994220346212387.5.1878
rotate([-79.96940052911218,
89.36920978442605,
13.033560846167932])
cube([11.390546113252642,1 47129990

Figure 13. User Interface. The interface enables users to effi-
ciently go through programs and adjust labels.

start line: 1

module_def line:1 _ module_def line:6 _ _ module_call line:11 _ module_call line:12
_ module_header line:1 _ _ module_scope line:1 _ _ module_header line: o _ module_scope line:6 _ _ module_header line:11 _ _ ; _ _ module_header line:12 _ _ ;
_ func_name line:1 _ _ arg _ _ module_call line:3 _ _ func_name line:6 _ arg _ _ module_call line:7 _ _ func_name line:11 _ _ arg _ _ func_name line:12 _ _ arg _

) JERN |

H _ B _ _an:_m\rmmmo_‘ _Eg_ _Bom:_m\moonm ::Qw_ _ A _ H

o\

_ func_name line:7 _ _ arg line:7 _ _ module_call line:8 _
module AQ{
cube([1,1,11); _ translate _ _ list line:7 _
ks
module BO{ T~
translate([1,1,1]) _ list_item line:7 _ _ list_item line:7 _ _ list_item line:7 _
sphere([3]);
3
>muw _ number line:7 _ _ number line:7 _ _ number line:7 _
BO;

[t L] L]

Figure 14. Abstracted Syntax Tree (AST). Each node in the AST maintains the operation type and the corresponding line number for

pixel-block registration.

	. Introduction
	. Related Work
	. Commenting Programs with CADTalker
	. Realistic Multiview Rendering
	. Part Detection and Segmentation
	. Part Label Voting

	. Building the CADTalk Dataset
	. Collecting CAD Programs
	. Evaluation Metrics

	. Experiments
	. Results
	. Ablation Study
	. Comparison with PartSLIP liu2023partslip
	. Commenting on Machine-made Macros
	. Semantic Commenting using ChatGPT

	. Conclusion
	. Additional Results
	. Commenting on ShapeCoder jones2023shapecoder Programs
	. Semantic Commenting using ChatGPT
	. Comparison with PartSLIP
	. Comparison with SATR
	. OpenLLM Model Test
	. Additional Commenting Results

	. Method Details
	. Implementation Details
	. Program Parsing

	. CADTalk Dataset
	. Dataset Overview
	. Evaluation Metrics
	. Machine-made Program Processing

