Content-Length: 333388 | pFad | http://dx.doi.org/10.1007/s00343-017-6267-2

a=86400 An aftereffect of global warming on tropical Pacific decadal variability | Journal of Oceanology and Limnology Skip to main content
Log in

An aftereffect of global warming on tropical Pacific decadal variability

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999–2014 period (P2) than that during 1961–1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the “wet-get-wetter” mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern–central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M A. 2010. Extratropical air-sea interaction, SST variability and the Pacific decadal oscillation (PDO). In: Sun D, Bryan F eds. Climate Dynamics: Why does Climate Vary. AGU Monograph #189, Washington DC, p.123–148.

    Chapter  Google Scholar 

  • Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 (3): 163–172.

    Article  Google Scholar 

  • Chen M Y, Xie P P, Janowiak J E, Arkin P A. 2002. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3 (3): 249–266.

    Article  Google Scholar 

  • Chou C, Neelin J D, Chen C A, Tu J Y. 2009. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22 (8): 1982–2005.

    Article  Google Scholar 

  • Compo G P, Whitaker J S, Sardeshmukh P D, Matsui N, Allan R J, Yin X, Gleason B E, Vose R S, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel R I, Grant A N, Groisman P Y, Jones P D, Kruk M, Kruger A C, Marshall G J, Maugeri M, Mok H Y, Nordli Ø, Ross T F, Trigo R M, Wang X L, WoodruffS D, and Worley S J. 2011. The Twentieth Century Reanalysis Project. Quarterly J. Roy. Meteorol. Soc., 137 (654): 1–28.

    Article  Google Scholar 

  • Dai A G. 2012. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923-2010. Clim ate Dyn., 41 (3): 633–646.

    Google Scholar 

  • Deser C, Phillips A S, Hurrell J W. 2004. Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 (16): 3109–3124.

    Article  Google Scholar 

  • Dong B W, Lu R Y. 2013. Interdecadal enhancement of the walker circulation over the Tropical Pacific in the late 1990s. Adv. Atmos. Sci., 30 (2): 247–262.

    Article  Google Scholar 

  • Dong L, Zhou T J, Chen X L. 2014. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41 (23): 8570–8577, https://doi.org/10.1002/2014GL062269.

    Article  Google Scholar 

  • England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W J, Sen Gupta A, McPhaden M J, Purich A, Santoso A. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4 (3): 222–227, https://doi.org/10.1038/nclimate2106.

    Article  Google Scholar 

  • Folland C K, Renwick J A, Salinger M J, Mullan A B. 2002. Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29 (13), https://doi.org/10.1029/2001GL014201.

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev. Geophys., 48 (4): RG4004, https://doi.org/10.1029/2010RG000345.

    Article  Google Scholar 

  • Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J. Climate, 19 (21): 5686–5699.

    Article  Google Scholar 

  • Hirahara S, Ishii M, Fukuda Y. 2014. Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27 (1): 57–75.

    Article  Google Scholar 

  • Huang B Y, Banzon V F, Freeman E, Lawrimore J, Liu W, Peterson T C, Smith T M, Thorne P W, WoodruffS D, Zhang H M. 2015. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Climate, 28 (3): 911–930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    Google Scholar 

  • Huang P, Xie S P, Hu K M, Huang G, Huang R H. 2013. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6 (5): 357–361.

    Article  Google Scholar 

  • Huang P, Xie S P. 2015. Mechanisms of change in ENSOinduced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8 (12): 922–926.

    Article  Google Scholar 

  • Huang P. 2014. Regional response of annual-mean tropical rainfall to global warming. Atmospheric Science Letters, 15 (2): 103–109.

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77 (3): 437–471.

    Article  Google Scholar 

  • Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501 (7467): 403–407, https://doi.org/10.1038/nature12534.

    Article  Google Scholar 

  • Liu Q Y, Wen N, Liu Z Y. 2006. An observational study of the impact of the North Pacific SST on the atmosphere. Geophys. Res. Lett., 33 (18): L18611, https://doi.org/10.1029/2006GL026082.

    Article  Google Scholar 

  • Liu W, Huang B Y, Thorne P W, Banzon V F, Zhang H M, Freeman E, Lawrimore J, Peterson T C, Smith T M, WoodruffS D. 2015. Extended reconstructed sea surface temperature version 4 (ERSST.v4): part II. Parametric and structural uncertainty estimations. J. Climate, 28 (3): 931–951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    Google Scholar 

  • Liu W, Xie S P, Lu J. 2016. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7: 10926, https://doi.org/10.1038/ncomms10926.

    Article  Google Scholar 

  • Liu Z Y. 2012. Dynamics of interdecadal climate variability: a historical perspective. J. Clim ate, 25 (6): 1963–1995, https://doi.org/10.1175/2011JCLI3980.1.

    Article  Google Scholar 

  • Mantua, N J, Hare S R, Zhang Y, Wallace J M, Francis R C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 (6): 1069–1079.

    Article  Google Scholar 

  • Mantua, N J, Hare S R. 2002. The Pacific Decadal Oscillation. J. Oceanography, 58 (1), 35–44, https://doi.org/10.1023/a:1015820616384.

    Article  Google Scholar 

  • Meehl G A, Arblaster J M, Fasullo J T, Hu A X, Trenberth K E. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1 (7): 360–364, https://doi.org/10.1038/nclimate1229.

    Article  Google Scholar 

  • Meehl G A, Hu A X, Arblaster J M, Fasullo J, Trenberth K E. 2013. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Climate, 26 (18): 7298–7310, https://doi.org/10.1175/JCLI-D-12-00548.1.

    Article  Google Scholar 

  • Neelin J D, Chou C, Su H. 2003. Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30 (24): 2275, https://doi.org/10.1029/2003GL018625.

    Article  Google Scholar 

  • Nitta T, Yamada S. 1989. Recent warming of tropical sea surface temperature and is relationship to the Northern Hemisphere circulation. Journal of the Meteorological Society of Japan, 67 (3): 375–383.

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V. 1999. Interdecadal modulation of the impact of ENSO on Australia. Clim ate Dyn., 15 (5): 319–324.

    Article  Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K. 2013. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502 (7472): 541–545.

    Article  Google Scholar 

  • Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14): 4407, https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B. 2014. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115 (1): 15–40, https://doi.org/10.1007/s00704-013-0860-x.

    Article  Google Scholar 

  • Smith T M, Reynolds R W, Peterson T C, Lawrimore J. 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21 (10): 2283–2296, https://doi.org/10.1175/2007JCLI2100.1.

    Article  Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93 (4): 485–498, https://doi.org/10.1175/BAMSD-11-00094.1.

    Article  Google Scholar 

  • Tokinaga H, Xie S P, Deser C, Kosaka Y, Okumura Y M. 2012. Slowdown of the walker circulation driven by tropical Indo-Pacific warming. Nature, 491 (7424): 439–443, https://doi.org/10.1038/nature11576.

    Article  Google Scholar 

  • Trenberth K E, Hurrell J W. 1994. Decadal atmosphere-ocean variations in the Pacific. Clim ate Dyn., 9 (6): 303–319.

    Article  Google Scholar 

  • Vecchi G A, Soden B J. 2007 Global warming and the weakening of the tropical circulation. J. Climate, 20 (17): 4316–4340.

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M. 2010. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Climate, 23 (23): 6312–6335, https://doi.org/10.1175/2010JCLI3679.1.

    Article  Google Scholar 

  • Wu R, Xie S-P. 2003. On equatorial Pacific surface wind changes around 1977: NCEP-NCAR reanalysis versus COADS observation. J. Climate, 16 (1): 167–173.

    Article  Google Scholar 

  • Xie S P, Deser C, Vecchi G A, Ma J, Teng H Y, Wittenberg A T. 2010. Global warming pattern formation: sea surface temperature and rainfall. J. Climate, 23 (4): 966–986.

    Article  Google Scholar 

  • Zhang Y, Wallace J M, Battisti D S. 1997. ENSO-like interdecadal variability: 1900-93. J. Climate, 10 (5): 1004–1020.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Drs. XIE Shangping and LU Jian for helpful discussions, and three anonymous reviewers for their contribution in the review process. JZ thanks Drs. HAN Weiqing and Michael Alexander for useful discussions when he was a visiting student supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zheng  (郑建).

Additional information

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA11010102), the National Natural Science Foundation of China (Nos. 41490643, 41606018), the Funds for Creative Research Groups of China (No. 41421005), and the Shandong Joint Fund for Marine Science Research Centers (No. U1406401)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Liu, Q. & Wang, C. An aftereffect of global warming on tropical Pacific decadal variability. J. Ocean. Limnol. 36, 193–204 (2018). https://doi.org/10.1007/s00343-017-6267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00343-017-6267-2

Keyword









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1007/s00343-017-6267-2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy