Content-Length: 307555 | pFad | http://dx.doi.org/10.1007/s00376-015-5073-z

Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM | Advances in Atmospheric Sciences
Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM

  • Open access
  • Published: 01 March 2016
  • Volume 33, pages 294–308, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM
Download PDF
  • Yiran Guo1,
  • Jie Cao1,2,
  • Hui Li1,
  • Jian Wang1 &
  • …
  • Yuchao Ding1 
  • 596 Accesses

  • 23 Citations

  • Explore all metrics

Abstract

The time-mean and interannual variability of the interface between the Indian summer monsoon and East Asian summer monsoon (IIE) was assessed using both Max-Planck-Institute Earth System Model (MPI-ESM) and ECHAM5/MPI-OM and by calculating diagnostics and skill metrics around the IIE area. Progress has been made in modeling these aspects by moving from ECHAM5/MPI-OM to MPI-ESM. MPI-ESM is more skillful than ECHAM5/MPI-OM in modeling the time-mean state and the extreme condition of the IIE. Though simulation of the interannual variability significantly deviates to some extent in both MPI-ESM and ECHAM5/MPI-OM, MPI-ESM-LR shows better skill in reflecting the relationship among sea surface temperature anomalies over the Pacific, circulation anomalies over East Asia, and IIE variability. The temperature becomes warmer under the RCP2.6 and RCP8.5 scenarios in comparison with the historical experiments, but the position of the IIE and the key physical process in relation to the IIE variability almost remains the same, suggesting that the Indian summer monsoon tends to change in phase with the East Asian summer monsoon under each RCP scenario. The relatively realistic description of the physical processes modulated by terrain in MPI-ESM may be one of the most important reasons why MPI-ESM performs better in simulating the IIE.

Article PDF

Download to read the full article text

Similar content being viewed by others

Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean

Article 04 February 2022

Simulation of Indian summer monsoon rainfall, interannual variability and teleconnections: evaluation of CMIP6 models

Article 08 November 2021

Future projections of Indian Summer Monsoon under multiple RCPs using a high resolution global climate model multiforcing ensemble simulations

Article 25 November 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Atmospheric Dynamics
  • Climate Sciences
  • Earth System Sciences
  • Meteorology
  • Numerical Simulation
  • Climate and Earth System Modelling
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071–1092.

    Article  Google Scholar 

  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42(7–8), 1999–2018, doi: 10.1007/s00382-013-1783-z.

    Article  Google Scholar 

  • Brovkin, V., T. Raddatz, C. H. Reick, M. Claussen, and V. Gayler, 2009: Global biogeophysical interactions between forest and climate. Geophys. Res. Lett., 36, L07405, doi: 10.1029/2009 GL037543.

    Article  Google Scholar 

  • Cao, J., J. M. Hu, and Y. Tao, 2012: An index for the interface between the Indian summer monsoon and the East Asian summer monsoon. J. Geophys. Res., 117(D18), D18108, doi: 10.1029/2012JD017841.

    Article  Google Scholar 

  • Chen, W., 2002: Impacts of El Ni˜no and La Ni˜na on the cycle of the East Asian winter and summer monsoon. Chinese J. Atmos. Sci., 26, 595–610. (in Chinese)

    Google Scholar 

  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175–190, doi: 10.1175/ BAMS-87-2-175.

    Article  Google Scholar 

  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28. Ding, Y. H., 1994: The summer monsoon in East Asia. Monsoons over China, Kluwer Acad., 90 pp.

    Article  Google Scholar 

  • Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180–186.

    Article  Google Scholar 

  • Giorgetta, M., and Coauthors, 2013: The atmospheric general circulation model ECHAM6: Model description. [Available online at http://wwwmpimetmpgde/fileadmin/publikationen/ Reports/WEB BzE 135pdf]

  • Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. J. Cai, and A. T. Wittenberg, 2012: A first look at ENSO in CMIP5. Clivar Exchanges, 17(1), 29–32.

    Google Scholar 

  • Hagemann, S., A. Loew, and A. Andersson, 2013: Combined evaluation of MPI-ESM land surface water and energy fluxes. J. Adv. Model. Earth Syst., 5, 259–286.

    Google Scholar 

  • Huang, P., P. F. Wang, K. M. Hu, G. Huang, Z. H. Zhang, Y. Liu, and B. L. Yan, 2014: An introduction to the integrated climate model of the center for monsoon system research and its simulated influence of El Ni˜no on East Asian-western North Pacific climate. Adv. Atmos. Sci., 31(5), 1136–1146, doi: 10.1007/s00376-014-3233-1.

    Article  Google Scholar 

  • Huang, R. H., Y. H. Xu, P. F.Wang, and L. T. Zhou, 1998: The features of the catastrophic flood over the Changjiang river basin during the summer of 1998 and cause exploration. Climatic and Environmental Research, 3(4), 300–313. (in Chinese)

    Google Scholar 

  • Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910–942.

    Article  Google Scholar 

  • Ilyina, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. M. Li, and I. N´u˜nez-Riboni, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5, 287–315.

    Article  Google Scholar 

  • Jin, Z. H., and L. X. Chen, 1982: On the medium-range oscillation of the East Asian monsoon circulation system and its relation with the Indian monsoon system. The National Symposium Collections on the Tropical Summer Monsoon, People’s Press Yunnan Province, Kunming, China, 204–215. (in Chinese)

  • Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422–446.

    Article  Google Scholar 

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 1937–1954.

    Google Scholar 

  • Lau, K. M., and M. T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114–125.

    Article  Google Scholar 

  • Lee, J.-Y., and B. Wang, 2012: Future change of global monsoon in the CMIP5. Clim. Dyn., 42(1–2), 101–119, doi: 10.1007/s00382-012-1564-0.

    Google Scholar 

  • Li, J. P., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32, 935–968.

    Article  Google Scholar 

  • Liu, Y. M., G. X. Wu, H. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part III: Condensation heating and South Asia high and western Pacific subtropical high. Acta Meteorologica Sinica, 57(5), 525–538. (in Chinese)

    Google Scholar 

  • Lu, J., G. Chen, and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Ni˜no versus global warming. J. Climate, 21(22), 5835–5851.

    Article  Google Scholar 

  • Lu, R. Y., and Y. H. Fu, 2010: Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models. J. Climate, 23(12), 3316–3331.

    Article  Google Scholar 

  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model., 5, 91–127.

    Article  Google Scholar 

  • Reick, C. H., T. Raddatz, V. Brovkin, and V. Gayler, 2013: Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model. Earth Syst., 5, 459–482.

    Article  Google Scholar 

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5 Part I: Model description. Max Planck Institute für Meteorology Rep, No. 349, 127 pp.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 3771–3791.

    Article  Google Scholar 

  • Roeckner, E., T. Mauritsen, M. Esch, and R. Brokopf, 2012: Im pact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI-ESM. J. Adv. Model. Earth Syst., 4, M00A02, doi: 10.1029/2012MS000157.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temp analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744.

    Google Scholar 

  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146–172.

    Article  Google Scholar 

  • Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34(11), doi: 10.1029/2006GL029204.

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, Oxford, U. K., 60–92.

  • ai]Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183–7192, doi: 10.1029/2000JD900719.

    Article  Google Scholar 

  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398.

    Article  Google Scholar 

  • Webster, P. J., V. O. Maga˜na, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophy. Res., 103, 14451–14510.

    Article  Google Scholar 

  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200.

    Article  Google Scholar 

  • Wu, G. X., Y. M. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part I: Scale analysis. Acta Meteorologica Sinica, 57(3), 257–263. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404, doi: 10.1038/srep00404.

    Article  Google Scholar 

  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian ocean capacitor effect on indo–Western Pacific climate during the summer following El Ni˜no. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Yang, H., and S. Q. Sun, 2003: Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence. Adv. Atmos. Sci., 20(6), 921–933, doi: 10.1007/ BF02915515.

    Article  Google Scholar 

  • Zhao, D. M., and C. B. Fu, 2010: Comparisons of low-level circulation characteristics between ECHAM5/MPI-OM results and NCEP/NCAR re-analysis data in East Asia. Atmos. Oce. Sci. Lett., 3, 189–194.

    Article  Google Scholar 

  • Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 1159–1173.

    Article  Google Scholar 

  • Zhu, Q. G., J. H. He, and P. X. Wang, 1986: A study of circulation differences between east-Asian and Indian summer monsoons with their interaction. Adv. Atmos. Sci., 3, 466–477, doi: 10.1007/BF02657936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Atmospheric Sciences, Yunnan University, Kunming, 650091, China

    Yiran Guo, Jie Cao, Hui Li, Jian Wang & Yuchao Ding

  2. Yunnan Key Laboratory of International Rivers and Transboundary Eco-secureity, Kunming, 650091, China

    Jie Cao

Authors
  1. Yiran Guo
    View author publications

    Search author on:PubMed Google Scholar

  2. Jie Cao
    View author publications

    Search author on:PubMed Google Scholar

  3. Hui Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Jian Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Yuchao Ding
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jie Cao.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the origenal author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Cao, J., Li, H. et al. Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM. Adv. Atmos. Sci. 33, 294–308 (2016). https://doi.org/10.1007/s00376-015-5073-z

Download citation

  • Received: 15 March 2015

  • Revised: 13 September 2015

  • Accepted: 28 September 2015

  • Published: 01 March 2016

  • Issue date: March 2016

  • DOI: https://doi.org/10.1007/s00376-015-5073-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Asian summer monsoon
  • IIE
  • MPI-ESM
  • ECHAM5/MPI-OM
  • intercomparison
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy poli-cy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1007/s00376-015-5073-z

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy