Content-Length: 299793 | pFad | http://dx.doi.org/10.1007/s00382-014-2394-z

a=86400 Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble | Climate Dynamics Skip to main content
Log in

Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the teleconnections between the tropical Atlantic and Pacific Oceans in 15 state-of-the-art fully coupled general circulation models and Earth system models without external SST forcing. In contrast to other studies, the teleconnection is considered in both directions—from the Pacific to the Atlantic and from the Atlantic to the Pacific. The model ensemble is generally able to simulate the propagation of atmospheric and oceanic signals to the adjacent ocean basin, generated by warm sea surface temperature (SST) anomalies in the tropical eastern oceans with Atlantic summer events lagging or leading Pacific boreal winter events. This is investigated by means of time-lagged composite analyses of different atmospheric parameters, including sea level pressure, wind, stream function, velocity potential, vertical air movement and divergent wind at several levels. However, the modelled inter-basin teleconnection and its correct frequency of occurrence depend on the strong warm SST biases in the Atlantic Benguela upwelling region and in the Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bauer DF (1972) Constructing confidence sets using rank statistics. J Am Stat Assoc 67:687–690

    Article  Google Scholar 

  • Bhaskaran B, Mullan A (2003) El Nino-related variations in the southern Pacific atmospheric circulation: model versus observations. Clim Dyn 20:229–239

    Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 24:888–903

    Article  Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature 443:324–328

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Delecluse P, Servain J, Levy C, Arpe K, Bengtsson L (1994) On the connection between the 1984 Atlantic warm event and the 1982–1983 ENSO. Tellus A 46:448–464

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Niño southern oscillation. Clim Dyn 38:1965–1972

    Article  Google Scholar 

  • Florenchie P, Reason C, Lutjeharms J, Rouault M, Roy C, Masson S (2004) Evolution of interannual warm and c old events in the southeast Atlantic Ocean. J Clim 17:2318–2334

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629

    Article  Google Scholar 

  • Hollander M, Wolfe D (1973) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  • Hong CC, Li T, Chen YC (2010) Asymmetry of the Indian Ocean Basinwide SST anomalies: roles of ENSO and IOD. J Clim 23:3563–3576

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Latif M, Grötzner A (2000) The equatorial Atlantic oscillation and its response to ENSO. Clim Dyn 16:213–218

    Article  Google Scholar 

  • Liu H, Wang C, Lee SK, Enfield D (2013) Atlantic warm pool variability in the CMIP5 simulations. J Clim 26:5315–5336

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 35:45–52

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2012) On the Inconsistent Relationship between Pacific and Atlantic Niños. J Clim 25:4294–4303

    Article  Google Scholar 

  • Lutz K, Rathmann J, Jacobeit J (2013) Classification of warm and cold water events in the eastern tropical Atlantic Ocean. Atmos Sci Lett 14:102–106

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

  • Richman M (1986) Rotation of principal components. Int J Climatol 6:293–335

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2012) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47

    Google Scholar 

  • Richter I, Xie SP, Behera S, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:10.1029/2009GL040048

  • Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sutton R, Jewson S, Rowell D (2000) The elements of climate variability in the tropical Atlantic region. J Clim 13:3261–3284

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: inter-Pacific-Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324

    Article  Google Scholar 

  • Webster PJ, Palmer TN (1997) The past and the future of El Niño. Nature 390:562–564

    Article  Google Scholar 

  • Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the DFG (German Research Foundation) under contract JA 831/9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Ott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ott, I., Romberg, K. & Jacobeit, J. Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble. Clim Dyn 44, 3043–3055 (2015). https://doi.org/10.1007/s00382-014-2394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-014-2394-z

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1007/s00382-014-2394-z

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy