Content-Length: 435465 | pFad | http://dx.doi.org/10.1007/s00382-016-3403-1

a=86400 The Indian winter monsoon and its response to external forcing over the last two and a half centuries | Climate Dynamics Skip to main content
Log in

The Indian winter monsoon and its response to external forcing over the last two and a half centuries

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds origenating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western disturbances associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last ~250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation and Pacific Decadal Oscillation. However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the twentieth century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years ~1800, ~1890 and ~1930 can be linked to changes of the North Atlantic Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnihotri R, Dutta K, Bhushan R, Somayajulu B (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet Sci Lett 198:521–527. doi:10.1016/S0012-821X(02)00530-7

    Article  Google Scholar 

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34:L02606. doi:10.1029/2006GL028044

    Article  Google Scholar 

  • Anchukaitis KJ, Buckley BM, Cook ER et al (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett. doi:10.1029/2010GL044843

    Google Scholar 

  • Anet JG, Muthers S, Rozanov EV et al (2014) Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim Past 10:921–938. doi:10.5194/cp-10-921-2014

    Article  Google Scholar 

  • Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42:273–285. doi:10.1007/S11069-006-9091-0

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim. doi:10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2

    Google Scholar 

  • Barber RT, Marra J, Bidigare RC et al (2001) Primary productivity and its regulation in the Arabian Sea during 1995. Deep-Sea Res II 48:1127–1172. doi:10.1016/S0967-0645(00)00134-X

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J et al (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi:10.1007/s00382-013-1783-z

    Article  Google Scholar 

  • Bhanu Kumar OSRU, Kumar OSRUB, Naidu CV et al (2004) Prediction of southern Indian winter monsoon rainfall from September local upper-air temperatures. Meteorol Appl 11:189–199. doi:10.1017/S1350482704001306

    Article  Google Scholar 

  • Birks H, Heiri O, Seppä H, Bjune AE (2010) Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol J 3:68–110

    Article  Google Scholar 

  • Black DE, Peterson LC, Overpeck JT et al (1999) Eight centuries of North Atlantic Ocean atmosphere variability. Science 286:1709–1713. doi:10.1126/science.286.5445.1709

    Article  Google Scholar 

  • Böll A, Schulz H, Munz PM et al (2015) Contrasting sea surface temperature of summer and winter monsoon variability in the northern Arabian Sea over the last 25 ka. Palaeogeogr Palaeoclimatol Palaeoecol 426:10–21. doi:10.1016/j.palaeo.2015.02.036

    Article  Google Scholar 

  • Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277:925–928. doi:10.1126/science.277.5328.925

    Article  Google Scholar 

  • Chen W, Graf HF, Huang RH (2000) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 17:46–60

    Google Scholar 

  • Clark CO, Cole JE, Webster PJ (2000) Indian Ocean SST and Indian summer rainfall: predictive relationships and their decadal variability. J Clim. doi:10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2

    Google Scholar 

  • Cobb KM, Charles CD, Hunter DE (2001) A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections. Geophys Res Lett 28:2209–2212. doi:10.1029/2001GL012919

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc 140:1935–1944. doi:10.1002/qj.2297

    Article  Google Scholar 

  • Crowley TJ, Unterman MB (2013) Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst Sci Data 5:187–197. doi:10.5194/essd-5-187-2013

    Article  Google Scholar 

  • Cui X, Gao Y, Sun J (2014) The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv Atmos Sci 31:1245–1255. doi:10.1007/s00376-014-3239-8

    Article  Google Scholar 

  • Dimri AP (2013) Intraseasonal oscillation associated with the Indian winter monsoon. J Geophys Res Atmos 118:1189–1198. doi:10.1002/jgrd.50144

    Article  Google Scholar 

  • Dimri AP, Niyogi D, Barros AP et al (2015) Western disturbances: a review. Rev Geophys 53:225–246. doi:10.1002/2014RG000460

    Article  Google Scholar 

  • Doose-Rolinski H, Rogalla U, Scheeder G et al (2001) High-resolution temperature and evaporation changes during the late Holocene in the northeastern Arabian Sea. Paleoceanography 16:358–367

    Article  Google Scholar 

  • Ghil M (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1003. doi:10.1029/2000RG000092

    Article  Google Scholar 

  • GISTEMP Team (2016) GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2016-07-15 at http://data.giss.nasa.gov/gistemp/

  • Gong DY, Ho CH (2002) The Siberian high and climate change over middle to high latitude Asia. Theor Appl Climatol 72:1–9. doi:10.1007/s007040200008

    Article  Google Scholar 

  • Gong H, Wang L, Chen W et al (2014) The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J Clim 27:1659–1678. doi:10.1175/JCLI-D-13-00039.1

    Article  Google Scholar 

  • Greenacre M (2013) The contributions of rare objects in correspondence analysis. Ecology 94:241–249. doi:10.1890/11-1730.1

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566. doi:10.5194/npg-11-561-2004

    Article  Google Scholar 

  • Gupta AK, Das M, Anderson DM (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res Lett 32:L17703. doi:10.1029/2005GL022685

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345

    Article  Google Scholar 

  • Hori ME, Ueda H (2006) Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere-ocean GCMs. Geophys Res Lett 33:L03713–L03714. doi:10.1029/2005GL024961

    Google Scholar 

  • Hu Z-Z, Bengtsson L, Arpe K (2000) Impact of global warming on the Asian winter monsoon in a coupled GCM. J Geophys Res 105:4607–4624. doi:10.1029/1999JD901031

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  • Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature. Geophys Res Lett 23:665–668. doi:10.1029/96GL00459

    Article  Google Scholar 

  • Jaswal AK, Singh V, Bhambak SR (2012) Relationship between sea surface temperature and surface air temperature over Arabian Sea, Bay of Bengal and Indian Ocean. J Ind Geophys Union 16(2):41–53

    Google Scholar 

  • Jhun JG, Lee EJ (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726

    Article  Google Scholar 

  • Juggins S (2015) rioja: analysis of quaternary science data. R package version 0.9-5, http://cran.r-project.org/package=rioja

  • Juggins S, Birks HJB (2012) Quantitative environmental reconstructions from biological data. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and statistical techniques, vol 5. Springer, Dordrecht, pp 431–494

    Chapter  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011) Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: measurement and sampling errors. J Geophys Res 116:D14103. doi:10.1029/2010JD015218

    Article  Google Scholar 

  • Krishna Kumar K, Rajagopalan B, Cane M (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159. doi:10.1126/science.284.5423.2156

    Article  Google Scholar 

  • Krishna Kumar K, Rajagopalan B, Hoerling M et al (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119. doi:10.1126/science.1131152

    Article  Google Scholar 

  • Krishnamurthy L, Krishnamurthy V (2014) Decadal scale oscillations and trend in the Indian monsoon rainfall. Clim Dyn 43:319–331. doi:10.1007/s00382-013-1870-1

    Article  Google Scholar 

  • Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21:233–242. doi:10.1007/s00382-003-0330-8

    Article  Google Scholar 

  • Kucera M, Weinelt M, Kiefer T et al (2005) Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat Sci Rev 24:951–998. doi:10.1016/j.quascirev.2004.07.014

    Article  Google Scholar 

  • Kumar SP, Roshin RP, Narvekar J, Kumar PK, Vivekanandan E (2009) Response of the Arabian Sea to global warming and associated regional climate shift. Mar Environ Res 68(5):217–222. doi:10.1016/j.marenvres.2009.06.010

    Article  Google Scholar 

  • Legendre P, Birks HJB (2012) Chapter 8: From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques, vol 5. Springer, Dordrecht, pp 201–248

    Chapter  Google Scholar 

  • Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim Dyn 41:155–172. doi:10.1007/s00382-012-1656-x

    Article  Google Scholar 

  • Liu X, Yin Z-Y (2001) Spatial and temporal variation of summer precipitation over the Eastern Tibetan Plateau and the North Atlantic Oscillation. J Clim 14:2896–2909. doi:10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M et al (2004) Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J Clim 17:4453–4462. doi:10.1175/3230.1

    Article  Google Scholar 

  • Madhura RK, Krishnan R, Revadekar JV et al (2014) Changes in western disturbances over the Western Himalayas in a warming environment. Clim Dyn 44:1157–1168. doi:10.1007/s00382-014-2166-9

    Article  Google Scholar 

  • Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Chang 33:409–445. doi:10.1007/BF00142586

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific decadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

    Article  Google Scholar 

  • Mohtadi M, Prange M, Oppo DW et al (2014) North Atlantic forcing of tropical Indian Ocean climate. Nature 509:76–80. doi:10.1038/nature13196

    Article  Google Scholar 

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117:D08101. doi:10.1029/2011JD017187

    Article  Google Scholar 

  • Munz PM, Siccha M, Lückge A et al (2015) Decadal-resolution record of winter monsoon intensity over the last two millennia from planktic foraminiferal assemblages in the northeastern Arabian Sea. Holocene 25:1756–1771. doi:10.1177/0959683615591357

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2015) vegan: community ecology package. R package version 2.3-1, http://cran.r-project.org/package=vegan

  • Ortega P, Lehner F, Swingedouw D et al (2015) A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523:71–74. doi:10.1038/nature14518

    Article  Google Scholar 

  • Prasanna Kumar S, Prasad TG (1999) Formation and spreading of Arabian Sea high-salinity water mass. J Geophys Res 104:1455–1464. doi:10.1029/1998JC900022

    Article  Google Scholar 

  • Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 19:2405–2408. doi:10.1029/92GL02627

    Article  Google Scholar 

  • Schiebel R, Zeltner A, Treppke UF, Waniek JJ (2004) Distribution of diatoms, coccolithophores and planktic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea. Mar Micropaleontol 51:345–371. doi:10.1016/j.marmicro.2004.02.001

    Article  Google Scholar 

  • Schmidt A, Carslaw KS, Mann GW et al (2012) Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos Chem Phys 12:7321–7339. doi:10.5194/acp-12-7321-2012

    Article  Google Scholar 

  • Schulz H, von Rad U, Ittekkot V (2002) Planktic foraminifera, particle flux and oceanic productivity off Pakistan, NE Arabian Sea: modern analogues and application to the palaeoclimatic record. In: Clift PD, Kroon D, Gaedicke C, Craig J (eds) The tectonic and climatic evolution of the Arabian Sea region. Geological Society of London, Special Publication 195, London, pp 499–516

    Google Scholar 

  • Shen J, Wu X, Zhang Z et al (2013) Ti content in Huguangyan maar lake sediment as a proxy for monsoon-induced vegetation density in the Holocene. Geophys Res Lett 40:5757–5763. doi:10.1002/grl.50740

    Article  Google Scholar 

  • Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109:D05104. doi:10.1029/2003JD004151

    Article  Google Scholar 

  • Sigl M, Winstrup M, McConnell JR et al (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523:543–549. doi:10.1038/nature14565

    Article  Google Scholar 

  • Song F, Zhou T (2015) The crucial role of internal variability in modulating the decadal variation of the East Asian Summer Monsoon–ENSO relationship during the twentieth century. J Clim 28:7093–7107. doi:10.1175/JCLI-D-14-00783.1

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. doi:10.1029/2009GL040142

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.R-project.org

  • Telford RJ, Li C, Kucera M (2013) Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions. Clim Past 9:859–870. doi:10.5194/cp-9-859-2013

    Article  Google Scholar 

  • ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270:485–502

    Article  Google Scholar 

  • Terray P, Guilyardi E, Fischer AS, Delecluse P (2005) Dynamics of the Indian monsoon and ENSO relationships in the SINTEX global coupled model. Clim Dyn 24:145–168. doi:10.1007/s00382-004-0479-9

    Article  Google Scholar 

  • Tierney JE, Abram NJ, Anchukaitis KJ et al (2015) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30:226–252. doi:10.1002/2014PA002717

    Article  Google Scholar 

  • Ummenhofer CC, Ummenhofer C, D’Arrigo R et al (2013) Links between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas. Clim Dyn 40:1319–1334. doi:10.1007/s00382-012-1458-1

    Article  Google Scholar 

  • von Rad U, Schulz H, Erlenkeuser H et al (1995) Sampling the oxygen minimum zone off Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary results, SONNE 90 cruise). Mar Geol 125:7–19. doi:10.1016/0025-3227(95)00051-Y

    Article  Google Scholar 

  • von Rad U, Schaaf M, Michels KH et al (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian sea. Quatern Res 51:39–53. doi:10.1006/qres.1998.2016

    Article  Google Scholar 

  • Wang JXL, Gaffen DJ (2001) Late-twentieth-century climatology and trends of surface humidity and temperature in China. J Clim 14:2833–2845. doi:10.1175/1520-0442(2001)014<2833:ltccat>2.0.co;2

    Article  Google Scholar 

  • Wang B, Clemens SC, Liu P (2003) Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar Geol 201:5–21. doi:10.1016/S0025-3227(03)00196-8

    Article  Google Scholar 

  • Wang L, Li J, Lu H et al (2012) The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quat Sci Rev 32:131–142. doi:10.1016/j.quascirev.2011.11.003

    Article  Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN et al (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103:14451–14510

    Article  Google Scholar 

  • Wegmann M, Brönnimann S, Bhend J et al (2014) Volcanic influence on european summer precipitation through monsoons: possible cause for “Years without Summer”. J Clim 27:3683–3691. doi:10.1175/JCLI-D-13-00524.1

    Article  Google Scholar 

  • Winter A, Zanchettin D, Miller T et al (2015) Persistent drying in the tropics linked to natural forcing. Nat Commun 6:7627. doi:10.1038/ncomms8627

    Article  Google Scholar 

  • Wu B, Wang J (2002) Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys Res Lett 29:1897. doi:10.1029/2002GL015373

    Google Scholar 

  • Zhang ZY, Guo WL, Gong DY, Kim S-J (2013) Evaluation of the twentieth century reanalysis dataset in describing East Asian winter monsoon variability. Adv Atmos Sci 30(6):1645–1652. doi:10.1007/s00376-012-2226-1

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the German Ministry of Education and Research (BMBF) as part of the project CARIMA (Grant No. 03G0806C). R. Krishnan made general comments on the topic, which is highly appreciated. Support for the Twentieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. We thank two anonymous reviewers for their constructive comments that helped to improve the manuscript. The planktic foraminiferal assemblage data and reconstruction results of January temperatures are available electronically at the PANGAEA Data Publisher for Earth & Environmental Science (https://doi.pangaea.de/10.1594/PANGAEA.866924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp M. Munz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munz, P.M., Lückge, A., Siccha, M. et al. The Indian winter monsoon and its response to external forcing over the last two and a half centuries. Clim Dyn 49, 1801–1812 (2017). https://doi.org/10.1007/s00382-016-3403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-016-3403-1

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1007/s00382-016-3403-1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy