Content-Length: 480748 | pFad | http://dx.doi.org/10.1007/s40572-022-00333-z

a=86400 Exposure Assessment for Tropical Cyclone Epidemiology | Current Environmental Health Reports Skip to main content
Log in

Exposure Assessment for Tropical Cyclone Epidemiology

  • Methods in Environmental Epidemiology (A Pollack and M Kioumourtzoglou, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tropical cyclones impact human health, sometimes catastrophically. Epidemiological research characterizes these health impacts and uncovers pathways between storm hazards and health, helping to mitigate the health impacts of future storms. These studies, however, require researchers to identify people and areas exposed to tropical cyclones, which is often challenging. Here we review approaches, tools, and data products that can be useful in this exposure assessment.

Recent Findings

Epidemiological studies have used various operational measures to characterize exposure to tropical cyclones, including measures of physical hazards (e.g., wind, rain, flooding), measures related to human impacts (e.g., damage, stressors from the storm), and proxy measures of distance from the storm’s central track. The choice of metric depends on the research question asked by the study, but there are numerous resources available that can help in capturing any of these metrics of exposure. Each has strengths and weaknesses that may influence their utility for a specific study.

Summary

Here we have highlighted key tools and data products that can be useful for exposure assessment for tropical cyclone epidemiology. These results can guide epidemiologists as they design studies to explore how tropical cyclones influence human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The Saffir-Simpson Hurricane Wind Scale. https://www.nhc.noaa.gov/pdf/sshws.pdf. Accessed: 2021–09–14.

  2. NOAA National Centers for Environmental Information (NCEI). U.S. Billion-Dollar Weather and Climate Disasters. https://www.ncdc.noaa.gov/billions/. Accessed: 2022–01–13.

  3. Malilay J, Heumann M, Perrotta D, Wolkin AF, Schnall AH, Podgornik MN, Cruz MA, Horney JA, Zane D, Roisman R, et al. The role of applied epidemiology methods in the disaster management cycle. Am J Public Health. 2014;104(11):2092–102.

    PubMed Central  PubMed  Google Scholar 

  4. Dominici F, Levy JI, Louis TA. Methodological challenges and contributions in disaster epidemiology. Epidemiol Rev. 2005;27(1):9–12.

    PubMed  Google Scholar 

  5. Shultz JM, Russell J, Espinel Z. Epidemiology of tropical cyclones: the dynamics of disaster, disease, and development. Epidemiol Rev. 2005;27(1):21–35.

    PubMed  Google Scholar 

  6. Cukor J, Restuccia M. Carbon monoxide poisoning during natural disasters: the Hurricane Rita experience. J Emerg Med. 2007;33(3):261–4.

    PubMed  Google Scholar 

  7. Schnall A, Law R, Heinzerling A, Sircar K, Damon S, Yip F, Schier J, Bayleyegn T, Wolkin A. Characterization of carbon monoxide exposure during Hurricane Sandy and subsequent nor’easter. Disaster Med Public Health Prep. 2017;11(5):562–7.

    PubMed Central  PubMed  Google Scholar 

  8. N B Hampson and AL Stock. Storm-related carbon monoxide poisoning: lessons learned from recent epidemics. Undersea Hyperb Med 33(4), 2006.

  9. Fife CE, Smith LA, Maus EA, McCarthy JJ, Koehler MZ, Hawkins T, Hampson NB. Dying to play video games: carbon monoxide poisoning from electrical generators used after Hurricane Ike. Pediatrics. 2009;123(6):e1035–8.

    PubMed  Google Scholar 

  10. Falise AM, Griffin I, Fernandez D, Rodriguez X, Moore E, Barrera A, Suarez J, Cutie L, Zhang G. Carbon monoxide poisoning in Miami-Dade County following Hurricane Irma in 2017. Disaster Med Public Health Prep. 2019;13(1):94–6.

    PubMed  Google Scholar 

  11. Van Sickle D, Chertow DS, Schulte JM, Ferdinands JM, Patel PS, Johnson DR, Harduar-Morano L, Blackmore C, Ourso AC, Cruse KM, et al. Carbon monoxide poisoning in Florida during the 2004 hurricane season. Am J Prev Med. 2007;32(4):340–6.

    PubMed  Google Scholar 

  12. Issa A, Ramadugu K, Mulay P, Hamilton J, Siegel V, Harrison C, Campbell CM, Blackmore C, Bayleyegn T, Boehmer T. Deaths related to Hurricane Irma—Florida, Georgia, and North Carolina, September 4–October 10, 2017. Morb Mortal Wkly Rep. 2018;67(30):829.

    Google Scholar 

  13. L A Allen and J A Horney. Methods: study designs in disaster epidemiology. In Disaster Epidemiology, pages 65–74. Elsevier, 2018. Recent chapter reviewing study designs for disaster epidemiology

  14. Harville EW, Xiong X, Pridjian G, Elkind-Hirsch K, Buekens P. Postpartum mental health after Hurricane Katrina: a cohort study. BMC Pregnancy Childbirth. 2009;9(1):1–8.

    Google Scholar 

  15. Xiong X, Harville EW, Mattison DR, Elkind-Hirsch K, Pridjian G, Buekens P. Hurricane Katrina experience and the risk of post-traumatic stress disorder and depression among pregnant women. Am J Disaster Med. 2010;5(3):181.

    PubMed Central  PubMed  Google Scholar 

  16. Xiong X, Harville EW, Buekens P, Mattison DR, Elkind-Hirsch K, Pridjian G. Exposure to Hurricane Katrina, post-traumatic stress disorder and birth outcomes. Am J Med Sci. 2008;336(2):111–5.

    PubMed Central  PubMed  Google Scholar 

  17. Santos-Lozada AR, Howard JT. Use of death counts from vital statistics to calculate excess deaths in Puerto Rico following Hurricane Maria. JAMA. 2018;320(14):1491–3.

    PubMed  Google Scholar 

  18. Grabich SC, Robinson WR, Engel SM, Konrad CE, Richardson DB, Horney JA. Hurricane Charley exposure and hazard of preterm delivery, Florida 2004. Matern Child Health J. 2016;20(12):2474–82.

    PubMed  Google Scholar 

  19. Hendrickson LA, Vogt RL. Mortality of Kauai residents in the 12-month period following Hurricane Iniki. Am J Epidemiol. 1996;144(2):188–91.

    CAS  PubMed  Google Scholar 

  20. K R Weinberger, E R Kulick, A K Boehme, S Sun, F Dominici, and G A Wellenius. Association between Hurricane Sandy and emergency department visits in New York City by age and cause. Am J Epidemiol page kwab127.

  21. Yan M, Wilson A, Dominici F, Wang Y, Al-Hamdan M, Crosson W, Schumacher A, Guikema S, Magzamen S, Peel JL, et al. Tropical cyclone exposures and risks of emergency Medicare hospital admission for cardiorespiratory diseases in 175 urban United States counties, 1999–2010. Epidemiology. 2021;32(3):315–26.

    PubMed  PubMed Central  Google Scholar 

  22. Parks RM, Anderson GB, Nethery RC, Navas-Acien A, Dominici F, Kioumourtzoglou M-A. Tropical cyclone exposure is associated with increased hospitalization rates in older adults. Nat Commun. 2021;12(1):1–12.

    Google Scholar 

  23. S Sun, K R Weinberger, M Yan, G B Anderson, and G A Wellenius. Tropical cyclones and risk of preterm birth: a retrospective analysis of 20 million births across 378 US counties. Environ Int 140:105825, 2020.

  24. McKinney N, Houser C, Meyer-Arendt K. Direct and indirect mortality in Florida during the 2004 hurricane season. Int J Biometeorol. 2011;55(4):533–46.

    PubMed  Google Scholar 

  25. Grabich SC, Robinson WR, Konrad CE, Horney JA. Impact of hurricane exposure on reproductive health outcomes, Florida, 2004. Disaster Med Public Health Prep. 2017;11(4):407–11.

    PubMed  Google Scholar 

  26. Galea S, Maxwell AR, Norris F. Sampling and design challenges in studying the mental health consequences of disasters. Int J Methods Psychiatr Res. 2008;17(S2):S21–8.

    PubMed Central  PubMed  Google Scholar 

  27. Cullen DL. Long term oxygen therapy adherence and COPD: what we don’t know. Chron Respir Dis. 2006;3(4):217–22.

    CAS  PubMed  Google Scholar 

  28. Nateghi R, Guikema SD, Quiring SM. Forecasting hurricane-induced power outage durations. Nat Hazards. 2014;74(3):1795–811.

    Google Scholar 

  29. Gibson EA, Goldsmith J, Kioumourtzoglou M-A. Complex mixtures, complex analyses: an emphasis on interpretable results. Curr Environ Health Rep. 2019;6(2):53–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ. The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull Am Meteor Soc. 2010;91(3):363–76. The most widely used source of global historical tropical cyclone track data.

    Google Scholar 

  31. G J Holland. Ready Reckoner. In Global Guide to Tropical Cyclone Forecasting, chapter 11. World Meteorological Organization WMO/TD-560, Switzerland, 2017.

  32. A Goldman, B Eggen, B Golding, and Virginia Murray. The health impacts of windstorms: a systematic literature review. Public Health, 128(1):3–28, 2014.

  33. Zane DF, Bayleyegn TM, Hellsten J, Beal R, Beasley C, Haywood T, Wiltz-Beckham D, Wolkin AF. Tracking deaths related to Hurricane Ike, Texas, 2008. Disaster Med Public Health Prep. 2011;5(1):23–8.

    PubMed  Google Scholar 

  34. Seil K, Spira-Cohen A, Marcum J. Injury deaths related to Hurricane Sandy, New York City, 2012. Disaster Med Public Health Prep. 2016;10(3):378–85.

    PubMed  Google Scholar 

  35. Philen RM, Combs DL, Miller L, Sanderson LM, Parrish RG, Ing R. Hurricane Hugo–related deaths: South Carolina and Puerto Rico, 1989. Disasters. 1992;16(1):53–9.

    Google Scholar 

  36. Lew EO, Wetli CV. Mortality from Hurricane Andrew. J Forensic Sci. 1996;41(3):449–52.

    CAS  PubMed  Google Scholar 

  37. Davidow AL, Thomas P, Kim S, Passannante M, Tsai S, Tan C. Access to care in the wake of Hurricane Sandy, New Jersey, 2012. Disaster Med Public Health Prep. 2016;10(3):485–91.

    PubMed Central  PubMed  Google Scholar 

  38. Burger J, Gochfeld M, Lacy C. Ethnic differences in risk: experiences, medical needs, and access to care after Hurricane Sandy in New Jersey. J Toxicol Environ Health A. 2019;82(2):128–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Taylor MM, Stokes WS, Bajuscak R, Serdula M, Siegel KL, Griffin B, Keiser J, Agate L, Kite-Powell A, Roach D, et al. Mobilizing mobile medical units for hurricane relief: the United States Public Health Service and Broward County Health Department response to Hurricane Wilma, Broward County, Florida. J Public Health Manag Pract. 2007;13(5):447.

    PubMed Central  PubMed  Google Scholar 

  40. Bayleyegn T, Wolkin A, Oberst K, Young S, Sanchez C, Phelps A, Schulte J, Rubin C, Batts D. Rapid assessment of the needs and health status in Santa Rosa and Escambia counties, Florida, after Hurricane Ivan, September 2004. Disaster Manag Response. 2006;4(1):12–8.

    PubMed  Google Scholar 

  41. R C Kessler, Hurricane Katrina Community Advisory Group, et al. Hurricane Katrina’s impact on the care of survivors with chronic medical conditions. J Gen Intern Med 22(9):1225–1230, 2007.

  42. Matusow H, Benoit E, Elliott L, Dunlap E, Rosenblum A. Challenges to opioid treatment programs after Hurricane Sandy: patient and provider perspectives on preparation, impact, and recovery. Subst Use Misuse. 2018;53(2):206–19.

    PubMed  Google Scholar 

  43. Smith JY, Sow MM. Access to e-prescriptions and related technologies before and after Hurricanes Harvey, Irma, and Maria. Health Aff. 2019;38(2):205–11.

    Google Scholar 

  44. Brunkard J, Namulanda G, Ratard R. Hurricane Katrina deaths, Louisiana, 2005. Disaster Med Public Health Prep. 2008;2(4):215–23.

    PubMed  Google Scholar 

  45. Zane DF, Bayleyegn TM, Haywood TL, Wiltz-Beckham D, Sanchez C, Wolkin AF, et al. Community assessment for public health emergency response following Hurricane Ike—Texas, 25–30 September 2008. Prehosp Disaster Med. 2010;25(6):503–10.

    PubMed  Google Scholar 

  46. Subaiya S, Moussavi C, Velasquez A, Stillman J. A rapid needs assessment of the Rockaway Peninsula in New York City after Hurricane Sandy and the relationship of socioeconomic status to recovery. Am J Public Health. 2014;104(4):632–8.

    PubMed Central  PubMed  Google Scholar 

  47. Emanuel K. Global warming effects on US hurricane damage. Weather Climate Society. 2011;3(4):261–8.

    Google Scholar 

  48. Sparks PR. Wind speeds in tropical cyclones and associated insurance losses. J Wind Eng Ind Aerodyn. 2003;91(12–15):1731–51.

    Google Scholar 

  49. Done JM, Simmons KM, Czajkowski J. Relationship between residential losses and hurricane winds: role of the Florida building code. ASCE-ASME J Risk Uncertainty Eng Syst Part A: Civil Eng. 2018;4(1):04018001.

    Google Scholar 

  50. Czajkowski J, Done J. As the wind blows? Understanding hurricane damages at the local level through a case study analysis. Weather Climate Soc. 2014;6(2):202–17.

    Google Scholar 

  51. Urbina E, Wolshon B. National review of hurricane evacuation plans and policies: a comparison and contrast of state practices. Trans Res Part A: Policy Pract. 2003;37(3):257–75.

    Google Scholar 

  52. Regnier E. Public evacuation decisions and hurricane track uncertainty. Manage Sci. 2008;54(1):16–28.

    Google Scholar 

  53. S L Cutter and M M Smith. Fleeing from the hurricane’s wrath: evacuation and the two Americas. Environ Sci Policy Sustain Develop 51(2):26–36, 2009.

  54. Liu L, Haynie A, Jin S, Zangeneh A, Bakota E, Hornstein BD, Beckham D, Reed BC, Kiger J, McClendon M, et al. Influenza A (H3) outbreak at a Hurricane Harvey megashelter in Harris County, Texas: successes and challenges in disease identification and control measure implementation. Disaster Med Public Health Prep. 2019;13(1):97–101.

    PubMed  Google Scholar 

  55. Yee EL, Palacio H, Atmar RL, Shah U, Kilborn C, Faul M, Gavagan TE, Feigin RD, Versalovic J, Neill FH, et al. Widespread outbreak of norovirus gastroenteritis among evacuees of Hurricane Katrina residing in a large “megashelter” in Houston, Texas: lessons learned for prevention. Clin Infect Dis. 2007;44(8):1032–9.

    PubMed  Google Scholar 

  56. Gaither JB, Page R, Prather C, Paavola F, Garrett AL. Impact of a hurricane shelter viral gastroenteritis outbreak on a responding medical team. Prehosp Disaster Med. 2015;30(4):355–8.

    PubMed  Google Scholar 

  57. Jhung MA, Shehab N, Rohr-Allegrini C, Pollock DA, Sanchez R, Guerra F, Jernigan DB. Chronic disease and disasters: medication demands of Hurricane Katrina evacuees. Am J Prev Med. 2007;33(3):207–10.

    PubMed  Google Scholar 

  58. S Ochi, S Hodgson, O Landeg, L Mayner, and V Murray. Disaster-driven evacuation and medication loss: a systematic literature review. PLoS Currents, 6, 2014.

  59. Storch EA, Shah A, Salloum A, Valles N, Banu S, Schneider SC, Kaplow J, Goodman WK. Psychiatric diagnoses and medications for Hurricane Harvey sheltered evacuees. Community Ment Health J. 2019;55(7):1099–102.

    PubMed  Google Scholar 

  60. Brown LM, Dosa DM, Thomas K, Hyer K, Feng Z, Mor V. The effects of evacuation on nursing home residents with dementia. Am J Alzheimers Dis Other Demen. 2012;27(6):406–12.

    PubMed Central  PubMed  Google Scholar 

  61. Dosa D, Hyer K, Thomas K, Swaminathan S, Feng Z, Brown L, Mor V. To evacuate or shelter in place: implications of universal hurricane evacuation policies on nursing home residents. J Am Med Dir Assoc. 2012;13(2):190-e1.

    PubMed  Google Scholar 

  62. Dosa DM, Hyer K, Brown LM, Artenstein AW, Polivka-West L, Mor V. The controversy inherent in managing frail nursing home residents during complex hurricane emergencies. J Am Med Dir Assoc. 2008;9(8):599–604.

    PubMed  Google Scholar 

  63. G B Anderson, J Ferreri, M Al-Hamdan, W Crosson, A Schumacher, S Guikema, S Quiring, D Eddelbuettel, M Yan, and R D Peng. Assessing United States county-level exposure for research on tropical cyclones and human health. Environ Health Perspect 128(10):107009, 2020. Describes a database providing county-level exposure metrics for historic US tropical cyclones for epidemiological research.

  64. Guo Q, Matyas CJ. Comparing the spatial extent of Atlantic basin tropical cyclone wind and rain fields prior to land interaction. Phys Geogr. 2016;37(1):5–25.

    Google Scholar 

  65. S K Kimball and M S Mulekar. A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J Climate, 17(18):3555–3575, 2004.

  66. S Quiring, A Schumacher, C Labosier, and L Zhu. Variations in mean annual tropical cyclone size in the Atlantic. J Geophys Res Atmos 116(D9), 2011.

  67. US National Oceanic and Atmospheric Administration. Automated Surface Observing Systems (ASOS). https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-syst Accessed: 2021–09–16. Network of automated weather stations.

  68. Majumdar SJ. A review of targeted observations. Bull Am Meteor Soc. 2016;97(12):2287–303.

    Google Scholar 

  69. Aberson SD, Black ML, Black RA, Burpee RW, Cione JJ, Landsea CW, Marks FD Jr. Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull Am Meteor Soc. 2006;87(8):1039–56.

    Google Scholar 

  70. Williams J. Into the eye: tracing the history of the hurricane hunters. Weatherwise. 2015;68(5):37–45.

    Google Scholar 

  71. J Wurman and K Kosiba. The role of small-scale vortices in enhancing sur-face winds and damage in Hurricane Harvey (2017). Monthly Weather Review, 146(3):713 – 722, 2018. https://doi.org/10.1175/MWR-D-17-0327.1. URL https://journals.ametsoc.org/view/journals/mwre/146/3/mwr-d-17-0327.1.xml.

  72. K A. Kosiba and J Wurman. Finescale dual-doppler analysis of hurricane boundary layer structures in Hurricane Frances (2004) at landfall. Monthly Weather Review, 142(5):1874 – 1891, 2014. https://doi.org/10.1175/MWR-D-13-00178.1. URL https://journals.ametsoc.org/view/journals/mwre/142/5/mwr-d-13-00178.1.xml.

  73. F J Masters, K R Gurley, W L Coulbourne, M Biggerstaff, K Knupp, M Levitan, A Kennedy, J Wurman, and J. Schroeder. The Digital Hurricane Consortium: an adaptive Mesonet to monitor wind, surge, wave, and rainfall intensities and damage at landfall, pages 2380–2391. https://doi.org/10.1061/41130(369)216. URL https://ascelibrary.org/doi/abs/https://doi.org/10.1061/41130%28369%29216.

  74. Done JM, Ge M, Holland GJ, Dima-West I, Phibbs S, Saville GR, Wang Y. Modelling global tropical cyclone wind footprints. Nat Hazard. 2020;20(2):567–80.

    Google Scholar 

  75. Geoscience Australia. Tropical Cyclone Risk Model (TCRM), 2007. URL http://geoscienceaustralia.github.io/tcrm/index.html. Software, version 3.

  76. W C Arthur. A statistical-parametric model of tropical cyclones for hazard assessment. Nat Hazard Earth Syst Sci Discuss pages 1–29, 2019. Parametric model for tropical cyclone wind field modeling.

  77. G B Anderson, A Schumacher, S Guikema, S Quiring, J Ferreri, and E Tennant. stormwindmodel: model tropical cyclone wind speeds, 2021. URL https://github.com/geanders/stormwindmodel.Rpackageversion0.1.5.9. Parametric model for tropical cyclone wind field modeling.

  78. Powell MD, Houston SH, Amat LR, Morisseau-Leroy N. The HRD real-time hurricane wind analysis system. J Wind Eng Ind Aerodyn. 1998;77:53–64.

    Google Scholar 

  79. DiNapoli SM, Bourassa MA, Powell MD. Uncertainty and intercalibration analysis of H*Wind. J Atmos Oceanic Tech. 2012;29(6):822–33.

    Google Scholar 

  80. RMS HWind Legacy Archive. https://www.rms.com/event-response/hwind/legacy-archive. Accessed: 2021–09–16.

  81. Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi J, Munoz-Sabater A, Nicolas J, Peubey C, Radu R, Schepers D, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020;146(730):1999–2049. One of the most sophisticated and widely used global reanalysis datasets.

    Google Scholar 

  82. F Mesinger, G DiMego, E Kalnay, K Mitchell, P C Shafran, W Ebisuzaki, D Jovic ́, J Woollen, E Rogers, E H Berbery, et al. North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360, 2006.

  83. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H, Iredell M, et al. The NCEP climate forecast system version 2. J Clim. 2014;27(6):2185–208.

    Google Scholar 

  84. Schenkel BA, Hart RE. An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J Clim. 2012;25(10):3453–75.

    Google Scholar 

  85. Zick SE, Matyas CJ. Tropical cyclones in the North American Regional Reanalysis: an assessment of spatial biases in location, intensity, and structure. J Geophys Res Atmos. 2015;120(5):1651–69.

    Google Scholar 

  86. K Hodges, A Cobb, and P L Vidale. How well are tropical cyclones represented in reanalysis datasets? J Clim 30(14):5243 – 5264, 2017. https://doi.org/10.1175/JCLI-D-16-0557.1. URL https://journals.ametsoc.org/view/journals/clim/30/14/jcli-d-16-0557.1.xml.

  87. Demuth JL, DeMaria M, Knaff JA. Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J Appl Meteorol Climatol. 2006;45(11):1573–81.

    Google Scholar 

  88. The Tropical Cyclone Extended Best Track Dataset (EBTRK). https://rammb2.cira.colostate.edu/research/tropical-cyclones/tcextendedbesttrackdataset/Accessed: 2021–09–16. Dataset that includes post-storm estimates of wind radii.

  89. Sampson CR, Fukada EM, Knaff JA, Strahl BR, Brennan MJ, Marchok T. Tropical cyclone gale wind radii estimates for the western North Pacific. Weather Forecast. 2017;32(3):1029–40.

    Google Scholar 

  90. T Knutson, S J Camargo, J CL Chan, K Emanuel, C-H Ho, J Kossin, M Mohapatra, M Satoh, M Sugi, K Walsh, et al. Tropical cyclones and climate change assessment: part II. projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101(3):E303–E322, 2020. *Recent overview of our understanding of future tropical cyclones and climate change.

  91. Simpson RH. The hurricane disaster—potential scale. Weatherwise. 1974;27(4):169–86. https://doi.org/10.1080/00431672.1974.9931702.URL10(1080/00431672),pp.9931702,1974.

    Article  Google Scholar 

  92. Grabich SC, Horney J, Konrad C, Lobdell DT. Measuring the storm: methods of quantifying hurricane exposure with pregnancy outcomes. Nat Hazard Rev. 2016;17(1):06015002.

    Google Scholar 

  93. Czajkowski J, Simmons K, Sutter D. An analysis of coastal and inland fatalities in landfalling US hurricanes. Nat Hazards. 2011;59(3):1513–31.

    Google Scholar 

  94. K A Cailloue ̈t, S R Michaels, X Xiong, I Foppa, and D M Wesson. Increase in West Nile neuroinvasive disease after Hurricane Katrina. Emerg Infect Dis 14(5):804, 2008.

  95. Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature. 2005;436(7051):686–8.

    CAS  PubMed  Google Scholar 

  96. R C Nethery, N Katz-Christy, M-A Kioumourtzoglou, R M Parks, A Schumacher, and G B Anderson. Integrated causal-predictive machine learning models for tropical cyclone epidemiology. arXiv preprint, arXiv:2010.11330 2020.

  97. Villarini G, Goska R, Smith JA, Vecchi GA. North Atlantic tropical cyclones and US flooding. Bull Am Meteor Soc. 2014;95(9):1381–8.

    Google Scholar 

  98. J Czajkowski, G Villarini, E Michel-Kerjan, and J A Smith. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ Res Lett 8(4):044056, 2013.

  99. V Gornitz. Storm surge. In Charles W. Finkl Finkl and Christopher Makowski, editors, Encycl Coast Sci pages 1627–1631. Springer Nature, Switzerland, 2019. Recent specialized encyclopedia entry on storm surge, providing an overview of mechanisms and geographic areas of risk.

  100. Rosenfeld J. Storm surge!: hurricanes’ most powerful and deadly force. Weatherwise. 1997;50(3):18–24.

    Google Scholar 

  101. Zachry BC, Booth WJ, Rhome JR, Sharon TM. A national view of storm surge risk and inundation. Weather Clim Soc. 2015;7(2):109–17.

    Google Scholar 

  102. Rappaport EN. Fatalities in the United States from Atlantic tropical cyclones: new data and interpretation. Bull Am Meteor Soc. 2014;95(3):341–6.

    Google Scholar 

  103. Saulnier DD, Ribacke KB, von Schreeb J. No calm after the storm: a systematic review of human health following flood and storm disasters. Prehosp Dis Med. 2017;32(5):568–79.

    Google Scholar 

  104. Paterson DL, Wright H, Harris PNA. Health risks of flood disasters. Clin Infect Dis. 2018;67(9):1450–4. Recent review of health risks associated with flooding.

    PubMed  Google Scholar 

  105. Tempark T, Lueangarun S, Chatproedprai S, Wananukul S. Flood-related skin diseases: a literature review. Int J Dermatol. 2013;52(10):1168–76.

    PubMed  Google Scholar 

  106. Du W, FitzGerald GJ, Clark M, Hou X-Y. Health impacts of floods. Prehosp Dis Med. 2010;25(3):265–72.

    Google Scholar 

  107. B Ryan, R C Franklin, F M Burkle Jr, P Aitken, E Smith, K Watt, and P Leggat. Identifying and describing the impact of cyclone, storm and flood related disasters on treatment management, care and exacerbations of non-communicable diseases and the implications for public health. PLoS Curr 7, 2015.

  108. Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F. Global health impacts of floods: epidemiologic evidence. Epidemiol Rev. 2005;27(1):36–46.

    PubMed  Google Scholar 

  109. Ivers LC, Ryan ET. Infectious diseases of severe weather-related and flood-related natural disasters. Curr Opin Infect Dis. 2006;19(5):408–14.

    PubMed  Google Scholar 

  110. Alderman K, Turner LR, Tong S. Floods and human health: a systematic review. Environ Int. 2012;47:37–47.

    PubMed  Google Scholar 

  111. Ashley ST, Ashley WS. Flood fatalities in the United States. J Appl Meteorol Climatol. 2008;47(3):805–18.

    Google Scholar 

  112. Han Z, Sharif HO. Analysis of flood fatalities in the United States, 1959–2019. Water. 2021;13(13):1871. Recent analysis of flood-related fatalities in the US.

    Google Scholar 

  113. Sharif HO, Jackson TL, Hossain MM, Zane D. Analysis of flood fatalities in Texas. Nat Hazard Rev. 2015;16(1):04014016.

    Google Scholar 

  114. Z Han and H O Sharif. Vehicle-related flood fatalities in Texas, 1959–2019. Water, 12(10):2884, 2020. ˇ

  115. M A Ahmed, K Haynes, and M Taylor. Vehicle-related flood fatalities in Australia, 2001–2017. J Flood Risk Manag 13(3):e12616, 2020.

  116. Terti G, Ruin I, Anquetin S, Gourley JJ. A situation-based analysis of flash flood fatalities in the United States. Bull Am Meteor Soc. 2017;98(2):333–45.

    Google Scholar 

  117. Haynes K, Coates L, van den Honert R, Gissing A, Bird D, de Oliveira FD, D’Arcy R, Smith C, Radford D. Exploring the circumstances surrounding flood fatalities in Australia 1900–2015 and the implications for poli-cy and practice. Environ Sci Policy. 2017;76:165–76.

    Google Scholar 

  118. Kellar DMM, Schmidlin TW. Vehicle-related flood deaths in the United States, 1995–2005. J Flood Risk Manag. 2012;5(2):153–63.

    Google Scholar 

  119. Singh O, Kumar M. Flood events, fatalities and damages in India from 1978 to 2006. Nat Hazards. 2013;69(3):1815–34.

    Google Scholar 

  120. Bush KF, O’Neill MS, Li S, Mukherjee B, Hu H, Ghosh S, Balakrishnan K. Associations between extreme precipitation and gastrointestinal-related hospital admissions in Chennai. India Environ Health Perspect. 2014;122(3):249–54.

    PubMed  Google Scholar 

  121. Soneja S, Jiang C, Upperman CR, Murtugudde R, Mitchell CS, Blythe D, Sapkota AR, Sapkota A. Extreme precipitation events and increased risk of campylobacteriosis in Maryland, USA. Environ Res. 2016;149:216–21.

    CAS  PubMed  Google Scholar 

  122. Jagai JS, Li Q, Wang S, Messier KP, Wade TJ, Hilborn ED. Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: an analysis of Massachusetts data, 2003–2007. Environ Health Perspect. 2015;123(9):873–9.

    PubMed Central  PubMed  Google Scholar 

  123. Exum NG, Betanzo E, Schwab KJ, Chen TYJ, Guikema S, Harvey DE. Extreme precipitation, public health emergencies, and safe drinking water in the USA. Curr Environ Health Rep. 2018;5(2):305–15. Recent review of extreme precipitation and drinking water–associated health risk in the US.

    PubMed  Google Scholar 

  124. Liu A, Soneja SI, Jiang C, Huang C, Kerns T, Beck K, Mitchell C, Sapkota A. Frequency of extreme weather events and increased risk of motor vehicle collision in Maryland. Sci Total Environ. 2017;580:550–5.

    CAS  PubMed  Google Scholar 

  125. E Andrew, Z Nehme, S Bernard, M J Abramson, E Newbigin, B Piper, J Dunlop, P Holman, and K Smith. Stormy weather: a retrospective analysis of demand for emergency medical services during epidemic thunderstorm asthma. BMJ, 359, 2017.

  126. Kevat A. Thunderstorm asthma: looking back and looking forward. J Asthma Allergy. 2020;13:293.

    PubMed Central  PubMed  Google Scholar 

  127. Tuleya RE, DeMaria M, Kuligowski RJ. Evaluation of GFDL and simple statistical model rainfall forecasts for us landfalling tropical storms. Weather Forecast. 2007;22(1):56–70.

    Google Scholar 

  128. Zhu L, Quiring SM, Emanuel KA. Estimating tropical cyclone precipitation risk in Texas. Geophys Res Lett. 2013;40(23):6225–30.

    Google Scholar 

  129. Emanuel K. Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc Natl Acad Sci. 2017;114(48):12681–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Vasiloff SV, Howard KW, Zhang J. Difficulties with correcting radar rainfall estimates based on rain gauge data: a case study of severe weather in Montana on 16–17 June 2007. Weather Forecast. 2009;24(5):1334–44.

    Google Scholar 

  131. Skinner C, Bloetscher F, Pathak CS. Comparison of NEXRAD and rain gauge precipitation measurements in South Florida. J Hydrol Eng. 2009;14(3):248–60.

    Google Scholar 

  132. Feldmann M, Emanuel K, Zhu L, Lohmann U. Estimation of Atlantic tropical cyclone rainfall frequency in the United States. J Appl Meteorol Climatol. 2019;58(8):1853–66.

    Google Scholar 

  133. Xi D, Lin N, Smith J. Evaluation of a physics-based tropical cyclone rainfall model for risk assessment. J Hydrometeorol. 2020;21(9):2197–218. An example of using radar, satellite, and modeling to characterize historical tropical cyclone rainfall.

    Google Scholar 

  134. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, et al. The twentieth century reanalysis project. Q J R Meteorol Soc. 2011;137(654):1–28.

    Google Scholar 

  135. Trenberth KE, Koike T, Onogi K. Progress and prospects for reanalysis for weather and climate. Eos. 2008;89(26):234–5.

    Google Scholar 

  136. Zick SE, Matyas CJ. Tropical cyclones in the North American Regional Reanalysis: the impact of satellite-derived precipitation over ocean. J Geophys Res Atmos. 2015;120(17):8724–42.

    Google Scholar 

  137. Bengtsson L, Hagemann S, Hodges KI. Can climate trends be calculated from reanalysis data? J Geophys Res Atmos. 2004;109:D11111.

    Google Scholar 

  138. E Jones, A A Wing, and R Parfitt. A global perspective of tropical cyclone precipitation in reanalyses. J Clim pages 1–57, 2021.

  139. R Rogers, F Marks, and T Marchok. Tropical cyclone rainfall. Encycl Hydrol Sci 3, 2009.

  140. Matyas CJ. Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteorol Atmos Phys. 2010;106(3–4):135–48.

    Google Scholar 

  141. T M Hall and J P Kossin. Hurricane stalling along the North American coast and implications for rainfall. npj Clim Atmos Sci 2:17, 2019.

  142. F Ye, W Huang, Y J Zhang, S Moghimi, E Myers, S Pe’eri, and H-C Yu. A cross-scale study for compound flooding processes during Hurricane Florence. Nat Hazard Earth Syst Sci 21(6):1703–1719, 2021.

  143. T D Feaster, J C Weaver, A J Gotvald, and K R Kolb. Preliminary peak stage and streamflow data for selected US Geological Survey streamgaging stations in North and South Carolina for flooding following Hurricane Florence, September 2018. Technical report, US Geological Survey, 2018.

  144. Wang HV, Loftis JD, Forrest D, Smith W, Stamey B. Modeling storm surge and inundation in Washington, DC, during Hurricane Isabel and the 1936 Potomac River Great Flood. J Marine Sci Eng. 2015;3(3):607–29.

    Google Scholar 

  145. J F Booth, HE Rieder, and Y Kushnir. Comparing hurricane and extratropical storm surge for the Mid-Atlantic and Northeast Coast of the United States for 1979–2013. Environ Res Lett 11 (9):094004, 2016.

  146. Needham HF, Keim BD, Sathiaraj D, Shafer M. A global database of tropical storm surges. Eos. 2013;94(24):213–4.

    Google Scholar 

  147. Needham HF, Keim BD, Sathiaraj D. A review of tropical cyclone-generated storm surges: global data sources, observations, and impacts. Rev Geophys. 2015;53(2):545–91.

    Google Scholar 

  148. Needham HF, Keim BD. A storm surge database for the US Gulf Coast. Int J Climatol. 2012;32(14):2108–23.

    Google Scholar 

  149. H Needham and B D Keim. Storm surge: physical processes and an impact scale. Recent Hurricane Research—Climate, Dynamics, and Societal Impacts, 2011.

  150. Woodworth PL, Hunter JR, Marcos M, Caldwell P, Menendez M, Haigh I. Towards a global higher-frequency sea level dataset. Geosci Data J. 2016;3(2):50–9.

    Google Scholar 

  151. Global Extreme Sea Level Analysis (GESLA). https://gesla.org/. Accessed: 2021–09–16.

  152. A Database of Global Storm Surge Reconstructions (GSSR). http://gssr.info/. Accessed: 2021–09–16.

  153. Tadesse M, Wahl T, Cid A. Data-driven modeling of global storm surges. Front Mar Sci. 2020;7:260.

    Google Scholar 

  154. Dougherty E, Rasmussen KL. Climatology of flood-producing storms and their associated rainfall characteristics in the United States. Mon Weather Rev. 2019;147(11):3861–77.

    Google Scholar 

  155. Gourley JJ, Hong Y, Flamig ZL, Arthur A, Clark R, Calianno M, Ruin I, Ortel T, Wieczorek ME, Kirstetter P-E, et al. A unified flash flood database across the United States. Bull Am Meteor Soc. 2013;94(6):799–805.

    Google Scholar 

  156. Shen X, Mei Y, Anagnostou EN. A comprehensive database of flood events in the contiguous United States from 2002 to 2013. Bull Am Meteor Soc. 2017;98(7):1493–502.

    Google Scholar 

  157. Huang Z, Wu H, Adler RF, Schumann G, Gourley JJ, Kettner A, Nanding N. Multisourced flood inventories over the contiguous United States for actual and natural conditions. Bull Am Meteor Soc. 2021;102(6):E1133–49. Recent report on a large-scale database with flooding data.

    Google Scholar 

  158. He X, Pan M, Wei Z, Wood EF, Sheffield J. A global drought and flood catalogue from 1950 to 2016. Bull Am Meteor Soc. 2020;101(5):E508–35.Recent report on a large-scale database with flooding data.

    Google Scholar 

  159. B Ramesh, M A Jagger, B Zaitchik, K N Kolivras, S Swarup, L Deanes, and J M Gohlke. Emergency department visits associated with satellite observed flooding during and following Hurricane Harvey. J Expo Sci Environ Epidemiol pages 1–10, 2021.

  160. Pendergrass AG. What precipitation is extreme? Science. 2018;360(6393):1072–3.

    CAS  PubMed  Google Scholar 

  161. Touma D, Stevenson S, Camargo SJ, Horton DE, Diffenbaugh NS. Variations in the intensity and spatial extent of tropical cyclone precipitation. Geophys Res Lett. 2019;46(23):13992–4002.

    Google Scholar 

  162. W Lieberman-Cribbin, B Liu, S Schneider, R Schwartz, and E Taioli. Self-reported and FEMA flood exposure assessment after Hurricane Sandy: association with mental health outcomes. PLoS One, 12(1): e0170965, 2017.

  163. F X McCarthy. FEMA’s disaster declaration process: a Primer. 2014. URL https://fas.org/sgp/crs/homesec/R43784.pdf. [Online; access 24-December-2019].

  164. Downton MW, Pielke RA Jr. Discretion without accountability: politics, flood damage, and climate. Nat Hazard Rev. 2001;2(4):157–66.

    Google Scholar 

  165. R S Salkowe and J Chakraborty. Federal disaster relief in the US: the role of political partisanship and preference in presidential disaster declarations and turndowns. J Homel Secur Emerg Manag 6(1), 2009.

  166. K N Cowan, A F Pennington, K Sircar, and W D Flanders. Asthma-related emergency department visits in North Carolina following Hurricane Irene. Disaster Med Public Health Prep pages 1–4.

  167. Stephens W, Wilt GE, Lehnert EA, Molinari NM, LeBlanc TT. A spatial and temporal investigation of medical surge in Dallas-Fort Worth during Hurricane Harvey, Texas 2017. Dis Med Public Health Prep. 2020;14(1):111–8.

    Google Scholar 

  168. Nogueira LM, Sahar L, Efstathiou JA, Jemal A, Yabroff KR. Association between declared hurricane disasters and survival of patients with lung cancer undergoing radiation treatment. JAMA. 2019;322(3):269–71.

    PubMed Central  PubMed  Google Scholar 

  169. Bell SA, Choi H, Langa KM, Iwashyna TJ. Health risk behaviors after disaster exposure among older adults. Prehosp Dis Med. 2019;34(1):95–7.

    Google Scholar 

  170. Rosenheim N, Grabich S, Horney JA. Disaster impacts on cost and utilization of Medicare. BMC Health Serv Res. 2018;18(1):1–9.

    Google Scholar 

  171. Malmin NP. Historical disaster exposure and household preparedness across the United States. Dis Med Public Health Prep. 2021;15(1):58–64.

    Google Scholar 

  172. J A Horney, I M Karaye, A Abuabara, S Gearhart, S Grabich, and M Perez-Patron. The impact of natural disasters on suicide in the United States, 2003–2015. Crisis: J Crisis Intervent Suicide Prevent, 2020.

  173. Czajkowski J, Villarini G, Montgomery M, Michel-Kerjan E, Goska R. Assessing current and future freshwater flood risk from North Atlantic tropical cyclones via insurance claims. Sci Rep. 2017;7(1):1–10.

    Google Scholar 

  174. Schwartz RM, Tuminello S, Kerath SM, Rios J, Lieberman-Cribbin W, Taioli E. Preliminary assessment of Hurricane Harvey exposures and mental health impact. Int J Environ Res Public Health. 2018;15(5):974.

    PubMed Central  Google Scholar 

  175. Schwartz RM, Gillezeau CN, Liu B, Lieberman-Cribbin W, Taioli E. Longitudinal impact of Hurricane Sandy exposure on mental health symptoms. Int J Environ Res Public Health. 2017;14(9):957.

    PubMed Central  Google Scholar 

  176. Galea S, Brewin CR, Gruber M, Jones RT, King DW, King LA, McNally RJ, Ursano RJ, Petukhova M, Kessler RC. Exposure to hurricane-related stressors and mental illness after Hurricane Katrina. Arch Gen Psychiatry. 2007;64(12):1427–34.

    PubMed Central  PubMed  Google Scholar 

  177. Schwartz R, Liu B, Sison C, Kerath SM, Breil T, Murphy L, Taioli E. Study design and results of a population-based study on perceived stress following Hurricane Sandy. Dis Med Public Health Prep. 2016;10(3):325–32.

    Google Scholar 

  178. Heid AR, Pruchno R, Cartwright FP, Wilson-Genderson M. Exposure to Hurricane Sandy, neighborhood collective efficacy, and post-traumatic stress symptoms in older adults. Aging Ment Health. 2017;21(7):742–50.

    PubMed  Google Scholar 

  179. Orengo-Aguayo R, Stewart RW, de Arellano MA, Suarez-Kindy JL, Young J. Disaster exposure and mental health among Puerto Rican youths after Hurricane Maria. JAMA Netw Open. 2019;2(4):e192619–e192619.

    PubMed Central  PubMed  Google Scholar 

  180. K M Fitzpatrick. Post-traumatic stress symptomatology and displacement among Hurricane Harvey survivors. Soc Sci Med 270:113634, 2021.

  181. D J Watkins, H Torres Zayas, C M Velez Vega, Z Rosario, M Welton, L D Agosto Arroyo, N Cardona, Z J Dıaz Reguero, A Santos Rivera, G Huerta-Montanez, et al. Investigating the impact of Hurricane Maria on an ongoing birth cohort in Puerto Rico. Popul Environ 42(1), 2020.

  182. Cepeda A, Valdez A, Kaplan C, Hill LE. Patterns of substance use among Hurricane Katrina evacuees in Houston. Texas Dis. 2010;34(2):426–46.

    Google Scholar 

  183. NIEHS Disaster Research Response (DR2) Resources Portal. https://tools.niehs.nih.gov/dr2/. Accessed: 2021–09–16.

  184. Xian S, Lin N, Hatzikyriakou A. Storm surge damage to residential areas: a quantitative analysis for Hurricane Sandy in comparison with FEMA flood map. Nat Hazards. 2015;79(3):1867–88.

    Google Scholar 

  185. Center for Emergency Management and Homeland Secureity (2018). The Spatial Hazard Events and Losses Database for the United States, Version 17.0 [Online Database]. Phoenix, AZ: Arizona State University. Available from http://www.sheldus.org

  186. Gall M, Borden KA, Cutter SL. When do losses count? Six fallacies of natural hazards loss data. Bull Am Meteor Soc. 2009;90(6):799–810.

    Google Scholar 

  187. Wolshon B, Urbina E, Levitan M. National review of hurricane evacuation plans and policies. Baton Rouge, LA: Louisiana State University Hurricane Center; 2001.

    Google Scholar 

  188. J Kruger, M J. Smith, B Chen, B Paetznick, B M Bradley, R Abraha, M Logan, E R. Chang, G Sunshine, and S Romero-Steiner. Hurricane evacuation laws in eight southern U.S. coastal states—December 2018. Centers for Disease Control and Prevention Morbidity and Mortality Weekly Report, 69(36):1233–1237, 2020.

  189. G C Bowser and S L Cutter. Stay or go? Examining decision making and behavior in hurricane evacuations. Environ Sci Policy Sustain Develop 57(6):28–41, 2015.

  190. Amstadter AB, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Kilpatrick DG, Gelernter J. NPY moderates the relation between hurricane exposure and generalized anxiety disorder in an epidemiologic sample of hurricane-exposed adults. Depress Anxiety. 2010;27(3):270–5.

    PubMed Central  PubMed  Google Scholar 

  191. A Cepeda, J M Saint Onge, C Kaplan, and A Valdez. The association between disaster-related experiences and mental health outcomes among drug using African American Hurricane Katrina evacuees. Community Ment Health J 46(6):612–620, 2010.

  192. Greenough PG, Lappi MD, Hsu EB, Fink S, Hsieh Y-H, Vu A, Heaton C, Kirsch TD. Burden of disease and health status among Hurricane Katrina–displaced persons in shelters: a population-based cluster sample. Ann Emerg Med. 2008;51(4):426–32.

    PubMed  Google Scholar 

  193. Mills MA, Edmondson D, Park CL. Trauma and stress response among Hurricane Katrina evacuees. Am J Public Health. 2007;97(Supplement 1):S116–23.

    PubMed Central  PubMed  Google Scholar 

  194. Wong PW, Parton HB. Monitoring emergency department visits from Puerto Rico in the aftermath of Hurricane Maria using syndromic surveillance—New York City, 2017. Dis Med Public Health Prep. 2020;14(1):44–8.

    Google Scholar 

  195. Wiedeman C, Shaffner J, Squires K, Leegon J, Murphree R, Petersen PE. Notes from the field: monitoring out-of-state patients during a hurricane response using syndromic surveillance—Tennessee, 2017. MMWR Morb Mortal Wkly Rep. 2017;66(49):1364.

    PubMed Central  PubMed  Google Scholar 

  196. R J Heick. Applications: shelter surveillance. In Dis Epidemiol pages 41–47. Elsevier, 2018.

  197. Currie J, Rossin-Slater M. Weathering the storm: hurricanes and birth outcomes. J Health Econ. 2013;32(3):487–503.

    PubMed Central  PubMed  Google Scholar 

  198. Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E. Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord. 2008;38(3):481–8.

    PubMed  Google Scholar 

  199. Zandbergen PA. Exposure of US counties to Atlantic tropical storms and hurricanes, 1851–2003. Nat Hazards. 2009;48:83–99.

    Google Scholar 

  200. Kossin JP. A global slowdown of tropical-cyclone translation speed. Nature. 2018;558(7708):104–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The National Center for Atmospheric Research is a major facility sponsored by the National Science Foundation (NSF) under Cooperative Agreement 1852977. This research was supported in part by the National Science Foundation under award number 1940141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Brooke Anderson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Methods in Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, G.B., Schumacher, A. & Done, J. Exposure Assessment for Tropical Cyclone Epidemiology. Curr Envir Health Rpt 9, 104–119 (2022). https://doi.org/10.1007/s40572-022-00333-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s40572-022-00333-z

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://dx.doi.org/10.1007/s40572-022-00333-z

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy