Content-Length: 4464233 | pFad | https://docs.agno.com/llms-full.txt

e # AgentUI Source: https://docs.agno.com/agent-os/agent-ui An Open Source AgentUI for your AgentOS Agno provides a beautiful UI for interacting with your agents, completely open source, free to use and build on top of. It's a simple interface that allows you to chat with your agents, view their memory, knowledge, and more. The AgentOS only uses data in your database. No data is sent to Agno. The Open Source Agent UI is built with Next.js and TypeScript. After the success of the [Agent AgentOS](/agent-os/introduction), the community asked for a self-hosted alternative and we delivered! ## Get Started with Agent UI To clone the Agent UI, run the following command in your terminal: ```bash theme={null} npx create-agent-ui@latest ``` Enter `y` to create a new project, install dependencies, then run the agent-ui using: ```bash theme={null} cd agent-ui && npm run dev ``` Open [http://localhost:3000](http://localhost:3000) to view the Agent UI, but remember to connect to your local agents.
You can also clone the repository manually ```bash theme={null} git clone https://github.com/agno-agi/agent-ui.git ``` And run the agent-ui using ```bash theme={null} cd agent-ui && pnpm install && pnpm dev ``` ## Connect your AgentOS The Agent UI needs to connect to a AgentOS server, which you can run locally or on any cloud provider. Let's start with a local AgentOS server. Create a file `agentos.py` ```python agentos.py theme={null} from agno.agent import Agent from agno.models.openai import OpenAIChat from agno.os import AgentOS from agno.db.sqlite import SqliteDb from agno.tools.duckduckgo import DuckDuckGoTools from agno.tools.yfinance import YFinanceTools agent_storage: str = "tmp/agents.db" web_agent = Agent( name="Web Agent", model=OpenAIChat(id="gpt-5-mini"), tools=[DuckDuckGoTools()], instructions=["Always include sources"], # Store the agent sessions in a sqlite database db=SqliteDb(db_file=agent_storage), # Adds the current date and time to the context add_datetime_to_context=True, # Adds the history of the conversation to the messages add_history_to_context=True, # Number of history responses to add to the messages num_history_runs=5, # Adds markdown formatting to the messages markdown=True, ) finance_agent = Agent( name="Finance Agent", model=OpenAIChat(id="gpt-5-mini"), tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True, company_news=True)], instructions=["Always use tables to display data"], db=SqliteDb(db_file=agent_storage), add_datetime_to_context=True, add_history_to_context=True, num_history_runs=5, markdown=True, ) agent_os = AgentOS(agents=[web_agent, finance_agent]) app = agent_os.get_app() if __name__ == "__main__": agent_os.serve("agentos:app", reload=True) ``` In another terminal, run the AgentOS server: ```bash Mac theme={null} python3 -m venv .venv source .venv/bin/activate ``` ```bash Windows theme={null} python3 -m venv aienv aienv/scripts/activate ``` ```bash Mac theme={null} pip install -U openai ddgs yfinance sqlalchemy 'fastapi[standard]' agno ``` ```bash Windows theme={null} pip install -U openai ddgs yfinance sqlalchemy 'fastapi[standard]' agno ``` ```bash Mac theme={null} export OPENAI_API_KEY=sk-*** ``` ```bash Windows theme={null} setx OPENAI_API_KEY sk-*** ``` ```shell theme={null} python agentos.py ``` Make sure the `serve_agentos_app()` points to the file containing your `AgentOS` app. ## View the AgentUI * Open [http://localhost:3000](http://localhost:3000) to view the Agent UI * Enter the `localhost:7777` endpoint on the left sidebar and start chatting with your agents and teams!