Content-Length: 323752 | pFad | https://doi.org/10.1007/s00382-012-1443-8

a=86400 Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability? | Climate Dynamics Skip to main content
Log in

Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study explores how global precipitation and tropospheric water vapor content vary on the interdecadal/long-term time scale during past three decades (1988–2010 for water vapor), in particular to what extent the spatial structures of their variations relate to changes in surface temperature. EOF analyses of satellite-based products indicate that the first two modes of global precipitation and columnar water vapor content anomalies are in general related to the El Niño-Southern oscillation. The spatial patterns of their third modes resemble the corresponding linear fits/trends estimated at each grid point, which roughly represent the interdecadal/long-term changes happening during the same time period. Global mean sea surface temperature (SST) and land surface temperature have increased during the past three decades. However, the water vapor and precipitation patterns of change do not reflect the pattern of warming, in particular in the tropical Pacific basin. Therefore, other mechanisms in addition to global warming likely exist to account for the spatial structures of global precipitation changes during this time period. An EOF analysis of longer-record (1949–2010) SST anomalies within the Pacific basin (60oN–60oS) indicates the existence of a strong climate regime shift around 1998/1999, which might be associated with the Pacific decadal variability (PDV) as suggested in past studies. Analyses indicate that the observed linear changes/trends in both precipitation and tropospheric water vapor during 1988–2010 seem to result from a combined impact of global mean surface warming and the PDV shift. In particular, in the tropical central-eastern Pacific, a band of increases along the equator in both precipitation and water vapor sandwiched by strong decreases south and north of it are likely caused by the opposite effects from global-mean surface warming and PDV-related, La Niña-like cooling in the tropical central-eastern Pacific. This narrow band of precipitation increase could also be considered an evidence for the influence of global mean surface warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Adler RF, Gu G, Wang J-J, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on the longer-than-seasonal time scales (1979–2006). J Geophys Res-Atmos 113:D22104. doi:10.1029/2008JD010536

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Burgman RJ, Clement AC, Mitas CM, Chen J, Esslinger K (2008) Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys Res Lett 35:L01704. doi:10.1029/2007GL031830

    Article  Google Scholar 

  • Chen J, Del Genio AD, Carlson BE, Bosilovich MG (2008a) The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend. J Clim 21:2611–2633

    Article  Google Scholar 

  • Chen J, Del Genio AD, Carlson BE, Bosilovich MG (2008b) The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part II: pacific pan-decadal variability. J Clim 21:2634–2650

    Article  Google Scholar 

  • Chou C, Neelin JD (2004) Mechanisms global warming impacts on regional tropical precipitation. J Clim 17:2688–2701

    Article  Google Scholar 

  • Clement AC, Seager R, Cane M, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkage between the tropics and the North Pacific during boreal winter since 1900. J Clim 17:3109–3124

    Article  Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi:10.1029/2009GL037810

    Article  Google Scholar 

  • Gu G, Adler RF (2011) Precipitation and temperature variations on the interannual time scale: assessing the impact of ENSO and volcanic eruptions. J Clim 24:2258–2270

    Article  Google Scholar 

  • Gu G, Adler RF, Huffman G, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal/longer-time scales derived from the GPCP monthly product. J Clim 20:4033–4046

    Google Scholar 

  • Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022

    Article  Google Scholar 

  • Harrison DE, Chiodi AM (2009) Pre- and post-1997/1998 westerly wind events and equatorial Pacific cold tongue warming. J Clim 22:568–581

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hsu P-C, Li T, Wang B (2011) Trends in global monsoon area and precipitation over the past 30 years. Geophys Res Lett 38:L08701. doi:10.1029/2011GL046893

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improvements in the GPCP global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to tropical ocean warming? Geophys Res Lett 36:L14702. doi:1029/2009GL038276

    Article  Google Scholar 

  • Kyte EA, Quartly GD, Srokosz MA, Tsimplis MN (2006) Interannual variations in precipitation: the effect of the North Atlantic and Southern oscillations as seen in a satellite precipitation data set and in models. J Geophys Res 111:D24113. doi:10.1029/2006JD007138

    Article  Google Scholar 

  • Lambert FH, Allen MR (2009) Are changes in global precipitation constrained by the tropospheric energy budget? J Clim 22:499–517

    Article  Google Scholar 

  • Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi:1029/2009GL038932

    Article  Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Ocean 58:35–44

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1:360–364. doi:10.1038/nclimate1229

    Article  Google Scholar 

  • Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett 30:2275. doi:10.1029/2003GL018625

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Google Scholar 

  • Smith TM, Yin X, Gruber A (2006) Variations in annual global precipitation (1979–2004), based on the global precipitation climatology project 2.5o analysis. Geophys Res Lett 33:L06705. doi:10.1029/2005GL025393

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sohn BJ, Park S-C (2011) Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res 115:D15112. doi:10.1029/2009JD013713

    Article  Google Scholar 

  • Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part II: Trends. J Clim 13:1018–1036

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteor Soc 84:1205–1217

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Tselioudis G, Tromeru E, Rossow WB, Zerefos CS (2010) Decadal changes in tropical convection suggest effects on stratospheric water vapor. Geophys Res Lett 37:L14806. doi:10.1029/2010GL044092

    Article  Google Scholar 

  • Wentz FJ (1997) A well-calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res 102(C4):8703–8718

    Google Scholar 

  • Wentz FJ, Schabel M (2000) Precise climate monitoring using complementary satellite data sets. Nature 403:414–416

    Article  Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming being? Science 317:233–235

    Article  Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg A (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Article  Google Scholar 

  • Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30-yr SST normals during 1871–2000. J Clim 16:1601–1612

    Article  Google Scholar 

  • Zahn M, Allan RP (2011) Changes in water vapor transports of the ascending branch of the tropical circulation. J Geophys Res 116:D18111. doi:10.1029/2011JD016206

    Article  Google Scholar 

Download references

Acknowledgments

The RSS-SSM/I and RSS-SSMIS columnar water vapor data were downloaded from http://www.remss.com. The ERSST data set (v3b) was downloaded from the NOAA-NCDC website at http://www.ncdc.noaa.gov/ersst/. The NASA-GISS global surface temperature anomaly product was downloaded from its website at http://data.giss.nasa.gov/. This research is supported under the NASA Energy and Water-cycle Study (NEWS) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, G., Adler, R.F. Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability?. Clim Dyn 40, 3009–3022 (2013). https://doi.org/10.1007/s00382-012-1443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-012-1443-8

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/s00382-012-1443-8

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy