Content-Length: 294107 | pFad | https://doi.org/10.1007/s11430-025-1684-3

a=86400 Ecohydrology and the need to constrain the understanding of plant transpiration | Science China Earth Sciences Skip to main content
Log in

Ecohydrology and the need to constrain the understanding of plant transpiration

  • Perspective
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ainsworth E A, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ, 30: 258–270

    Article  CAS  Google Scholar 

  • Bonan G B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320: 1444–1449

    Article  CAS  Google Scholar 

  • Cui J, Piao S, Huntingford C, Wang X, Lian X, Chevuturi A, Turner A G, Kooperman G J. 2020. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat Commun, 11: 5184

    Article  CAS  Google Scholar 

  • Cui J, Ding J, Lian X, Wei Z, Li S, Peng J, Poyatos R, Wang T, Piao S. 2024. Observational constraints and attribution of global plant transpiration changes over the past four decades. Geophys Res Lett, 51: e2024GL108302

    Article  Google Scholar 

  • Forzieri G, Alkama R, Miralles D G, Cescatti A. 2017. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356: 1180–1184

    Article  CAS  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Gregor L, Hauck J, Le Quéré C, Luijkx I T, Olsen A, Peters G P, Peters W, Pongratz J, Schwingshackl C, Sitch S, Canadell J G, Ciais P, Jackson R B, Alin S R, Alkama R, Arneth A, Arora V K, Bates N R, Becker M, Bellouin N, Bittig H C, Bopp L, Chevallier F, Chini L P, Cronin M, Evans W, Falk S, Feely R A, Gasser T, Gehlen M, Gkritzalis T, Gloege L, Grassi G, Gruber N, Gürses Ö, Harris I, Hefner M, Houghton R A, Hurtt G C, Iida Y, Ilyina T, Jain A K, Jersild A, Kadono K, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken J I, Landschützer P, Lefèvre N, Lindsay K, Liu J, Liu Z, Marland G, Mayot N, McGrath M J, Metzl N, Monacci N M, Munro D R, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pan N, Pierrot D, Pocock K, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Rodriguez C, Rosan T M, Schwinger J, Séférian R, Shutler J D, Skjelvan I, Steinhoff T, Sun Q, Sutton A J, Sweeney C, Takao S, Tanhua T, Tans P P, Tian X, Tian H, Tilbrook B, Tsujino H, Tubiello F, van der Werf G R, Walker A P, Wanninkhof R, Whitehead C, Willstrand Wranne A, Wright R, Yuan W, Yue C, Yue X, Zaehle S, Zeng J, Zheng B. 2022. Global Carbon Budget 2022. Earth Syst Sci Data, 14: 4811–4900

    Article  Google Scholar 

  • Gedney N, Cox P M, Betts R A, Boucher O, Huntingford C, Stott P A. 2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439: 835–838

    Article  CAS  Google Scholar 

  • Gimeno T E, Stangl Z R, Barbeta A, Saavedra N, Wingate L, Devert N, Marshall J D. 2022. Water taken up through the bark is detected in the transpiration stream in intact upper-canopy branches. Plant Cell Environ, 45: 3219–3232

    Article  CAS  Google Scholar 

  • Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699

    Article  Google Scholar 

  • Huntingford C, Nicoll A J, Klein C, Ahmad J A. 2025. Potential for equation discovery with AI in the climate sciences. Earth Syst Dynam, 16: 475–495

    Article  Google Scholar 

  • Jung M, Koirala S, Weber U, Ichii K, Gans F, Camps-Valls G, Papale D, Schwalm C, Tramontana G, Reichstein M. 2019. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci Data, 6: 74

    Article  Google Scholar 

  • Keenan T F, Hollinger D Y, Bohrer G, Dragoni D, Munger J W, Schmid H P, Richardson A D. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499: 324–327

    Article  CAS  Google Scholar 

  • Kool D, Agam N, Lazarovitch N, Heitman J L, Sauer T J, Ben-Gal A. 2014. A review of approaches for evapotranspiration partitioning. Agric For Meteor, 184: 56–70

    Article  Google Scholar 

  • Koppa A, Rains D, Hulsman P, Poyatos R, Miralles D G. 2022. A deep learning-based hybrid model of global terrestrial evaporation. Nat Commun, 13: 1912

    Article  CAS  Google Scholar 

  • Li F, Xiao J, Chen J, Ballantyne A, Jin K, Li B, Abraha M, John R. 2023. Global water use efficiency saturation due to increased vapor pressure deficit. Science, 381: 672–677

    Article  CAS  Google Scholar 

  • Li L, Yang Z, Matheny A M, Zheng H, Swenson S C, Lawrence D M, Barlage M, Yan B, McDowell N G, Leung L R. 2021. Representation of plant hydraulics in the Noah-MP Land Surface Model: Model development and multiscale evaluation. J Adv Model Earth Syst, 13: e2020MS002214

    Article  Google Scholar 

  • Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice I C, Barton C V M, Crous K Y, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol, 17: 2134–2144

    Article  Google Scholar 

  • Norby R J, Warren J M, Iversen C M, Medlyn B E, McMurtrie R E. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA, 107: 19368–19373

    Article  CAS  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S. 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci USA, 104: 15242–15247

    Article  CAS  Google Scholar 

  • Piao S, Wang X, Park T, Chen C, Lian X, He Y, Bjerke J W, Chen A, Ciais P, Tømmervik H, Nemani R R, Myneni R B. 2020. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ, 1: 14–27

    Article  Google Scholar 

  • Poyatos R, Granda V, Flo V, Adams M A, Adorján B, Aguadé D, Aidar M P M, Allen S, Alvarado-Barrientos M S, Anderson-Teixeira K J, Aparecido L M, Arain M A, Aranda I, Asbjornsen H, Baxter R, Beamesderfer E, Berry Z C, Berveiller D, Blakely B, Boggs J, Bohrer G, Bolstad P V, Bonal D, Bracho R, Brito P, Brodeur J, Casanoves F, Chave J, Chen H, Cisneros C, Clark K, Cremonese E, Dang H, David J S, David T S, Delpierre N, Desai A R, Do F C, Dohnal M, Domec J C, Dzikiti S, Edgar C, Eichstaedt R, El-Madany T S, Elbers J, Eller C B, Euskirchen E S, Ewers B, Fonti P, Forner A, Forrester D I, Freitas H C, Galvagno M, Garcia-Tejera O, Ghimire C P, Gimeno T E, Grace J, Granier A, Griebel A, Guangyu Y, Gush M B, Hanson P J, Hasselquist N J, Heinrich I, Hernandez-Santana V, Herrmann V, Hölttä T, Holwerda F, Irvine J, Isarangkool Na Ayutthaya S, Jarvis P G, Jochheim H, Joly C A, Kaplick J, Kim H S, Klemedtsson L, Kropp H, Lagergren F, Lane P, Lang P, Lapenas A, Lechuga V, Lee M, Leuschner C, Limousin J M, Linares J C, Linderson M L, Lindroth A, Llorens P, López-Bernal Á, Loranty M M, Lüttschwager D, Macinnis-Ng C, Maréchaux I, Martin T A, Matheny A, McDowell N, McMahon S, Meir P, Mészáros I, Migliavacca M, Mitchell P, Mölder M, Montagnani L, Moore G W, Nakada R, Niu F, Nolan R H, Norby R, Novick K, Oberhuber W, Obojes N, Oishi A C, Oliveira R S, Oren R, Ourcival J M, Paljakka T, Perez-Priego O, Peri P L, Peters R L, Pfautsch S, Pockman W T, Preisler Y, Rascher K, Robinson G, Rocha H, Rocheteau A, Röll A, Rosado B H P, Rowland L, Rubtsov A V, Sabaté S, Salmon Y, Salomón R L, Sánchez-Costa E, Schäfer K V R, Schuldt B, Shashkin A, Stahl C, Stojanović M, Suárez J C, Sun G, Szatniewska J, Tatarinov F, Tesař M, Thomas F M, Tor-ngern P, Urban J, Valladares F, van der Tol C, van Meerveld I, Varlagin A, Voigt H, Warren J, Werner C, Werner W, Wieser G, Wingate L, Wullschleger S, Yi K, Zweifel R, Steppe K, Mencuccini M, Martínez-Vilalta J. 2021. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst Sci Data, 13: 2607–2649

    Article  Google Scholar 

  • Reich P B, Hobbie S E, Lee T D, Pastore M A. 2018. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science, 360: 317–320

    Article  CAS  Google Scholar 

  • Rothfuss Y, Quade M, Brüggemann N, Graf A, Vereecken H, Dubbert M. 2021. Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods. Biogeosciences, 18: 3701–3732

    Article  CAS  Google Scholar 

  • Wang D, Zeng Z. 2024. Urgent need to improve modelled sensitivity of evaporation to vegetation change. Nat Water, 2: 211–214

    Article  Google Scholar 

  • Wang K, Dickinson R E. 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev Geophys, 50: RG2005

    Article  Google Scholar 

  • Zeng Z, Piao S, Li L Z X, Zhou L, Ciais P, Wang T, Li Y, Lian X, Wood E F, Friedlingstein P, Mao J, Estes L D, Myneni R B, Peng S, Shi X, Seneviratne S I, Wang Y. 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Change, 7: 432–436

    Article  Google Scholar 

  • Zhao M, A G, Liu Y, Konings A G. 2022. Evapotranspiration frequently increases during droughts. Nat Clim Chang, 12: 1024–1030

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Xu LIAN and Mingzhu HE for their constructive suggestions during manuscript preparation. This study was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant No. 2024QZKK0301) and the National Natural Science Foundation of China (Grant Nos. 42522506 and 42471113)..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://earth.scichina.com and http://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Huntingford, C., Piao, S. et al. Ecohydrology and the need to constrain the understanding of plant transpiration. Sci. China Earth Sci. 68, 3399–3406 (2025). https://doi.org/10.1007/s11430-025-1684-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11430-025-1684-3









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/s11430-025-1684-3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy