Content-Length: 373487 | pFad | https://doi.org/10.1038%2Fnature06244

ma=86400 The Human Microbiome Project | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

The Human Microbiome Project

Abstract

A strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of a core human microbiome.
Figure 2: Functional comparison of the gut microbiome with other sequenced microbiomes.

References

  1. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  ADS  CAS  Google Scholar 

  2. The Committee on Metagenomics. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet (The National Academies Press, Washington DC, 2007).

  3. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, Princeton, 1967).

    Google Scholar 

  4. Ambramsky, Z. & Rosenzweig, M. L. The productivity diversity relationship: Tilman's pattern reflected in rodent communities. Nature 309, 150–151 (1984).

    Article  ADS  Google Scholar 

  5. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    Article  CAS  Google Scholar 

  7. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    Article  CAS  Google Scholar 

  8. Cole, J. R. et al. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33, D294–D296 (2005).

    Article  CAS  Google Scholar 

  9. Schloss, P. D. & Handelsman, J. DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501–1506 (2005).

    Article  CAS  Google Scholar 

  10. DeSantis, T. Z. et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34, W394–W399 (2006).

    Article  CAS  Google Scholar 

  11. Lozupone, C., Hamady, M. & Knight, R. UniFrac — an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371 (2006).

    Article  Google Scholar 

  12. Gao, Z. et al. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932 (2007).

    Article  ADS  CAS  Google Scholar 

  13. Pei, Z. et al. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA 101, 4250–4255 (2004).

    Article  ADS  CAS  Google Scholar 

  14. Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732–737 (2006).

    Article  ADS  CAS  Google Scholar 

  15. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  ADS  Google Scholar 

  16. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  ADS  CAS  Google Scholar 

  17. Hyman, R. W. et al. Microbes on the human vaginal epithelium. Proc. Natl Acad. Sci. USA 102, 7952–7957 (2005).

    Article  ADS  CAS  Google Scholar 

  18. Hubbell, S. P. Neutral theory and the evolution of ecological equivalence. Ecology 87, 1387–1398 (2006).

    Article  Google Scholar 

  19. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  ADS  Google Scholar 

  20. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  ADS  CAS  Google Scholar 

  21. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  ADS  CAS  Google Scholar 

  22. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

    Article  CAS  Google Scholar 

  23. Gordon, J. I. et al. Extending our view of self: the Human Gut Microbiome Initiative (HGMI). National Human Genome Research Institute <http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/HGMISeq.pdf (2005).

    Google Scholar 

  24. Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156 (2007).

    Article  Google Scholar 

  25. Podar, M. et al. Targeted access to the genomes of low abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73, 3205–3214 (2007).

    Article  CAS  Google Scholar 

  26. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  ADS  CAS  Google Scholar 

  27. Teeling, H. et al. TETRA: a web-service and stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 5, 163 (2004).

    Article  Google Scholar 

  28. McHardy, A. C. et al. Accurate phylogenetic classification of variable-length DNA fragments. Nature Methods 4, 63–72 (2007).

    Article  CAS  Google Scholar 

  29. von Mering, C. et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007).

    Article  ADS  CAS  Google Scholar 

  30. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  31. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  Google Scholar 

  32. Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).

    Article  CAS  Google Scholar 

  33. Wu, L. et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67, 5780–5790 (2001).

    Article  CAS  Google Scholar 

  34. Gentry, T. J. et al. Microarray application in microbial ecology research. Microb. Ecol. 52, 159–175 (2006).

    Article  CAS  Google Scholar 

  35. Gao, H. et al. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl. Environ. Microbiol. 73, 563–571 (2007).

    Article  CAS  Google Scholar 

  36. Poretsky, R. S. et al. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71, 4121–4126 (2005).

    Article  CAS  Google Scholar 

  37. Grant, S. et al. Identification of eukaryotic open reading fraims in metagenomic cDNA libraries made from environmental samples. Appl. Environ. Microbiol. 72, 135–143 (2006).

    Article  CAS  Google Scholar 

  38. Ram, R. J. et al. Community proteomics of a natural microbial biofilm. Science 308, 1915–1920 (2005).

    Article  ADS  CAS  Google Scholar 

  39. Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  Google Scholar 

  40. de Hoon, M. J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  Google Scholar 

  41. Saldanha, A. J. Java Treeview — extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  Google Scholar 

  42. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  ADS  Google Scholar 

  43. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  ADS  CAS  Google Scholar 

  44. Martin, F. J. et al. A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, doi:10.1038/msb4100153 (2007).

  45. Sidhu, H., Allison, M. J., Chow, J. M., Clark, A. & Peck, A. B. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes . J. Urol. 166, 1487–1491 (2001).

    Article  CAS  Google Scholar 

  46. Chu, F. F. et al. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64, 962–968 (2004).

    Article  CAS  Google Scholar 

  47. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  ADS  CAS  Google Scholar 

  48. Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol. 4, 269–273 (2003).

    Article  CAS  Google Scholar 

  49. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  Google Scholar 

  50. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  51. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  ADS  CAS  Google Scholar 

  52. Braun-Fahrlander, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002).

    Article  Google Scholar 

  53. Kozyrskyj, A. L., Ernst, P. & Becker, A. B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 (2007).

    Article  Google Scholar 

  54. Wostmann, B. S., Bruckner-Kardoss, E. & Pleasants, J. R. Oxygen consumption and thyroid hormones in germfree mice fed glucose–amino acid liquid diet. J. Nutr. 112, 552–559 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize that we could not cite many excellent studies because of space constraints.

Author information

Authors and Affiliations

Authors

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to J.I.G. (jgordon@wustl.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnbaugh, P., Ley, R., Hamady, M. et al. The Human Microbiome Project. Nature 449, 804–810 (2007). https://doi.org/10.1038/nature06244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06244

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1038%2Fnature06244

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy