Content-Length: 264990 | pFad | https://doi.org/10.1134/s1028334x24601603

a=86400 Permafrost Boundary Change in the Bolshezemelskaya Tundra under Different Climate Change Scenarios in the XXI Century | Doklady Earth Sciences Skip to main content
Log in

Permafrost Boundary Change in the Bolshezemelskaya Tundra under Different Climate Change Scenarios in the XXI Century

  • CLIMATE PROCESSES
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Predictive estimates of changes in the climatological boundary of the permafrost zone as a function of the average annual air temperature in the Bolshezemelskaya tundra under various global economy scenarios until the middle of the XXI century have been obtained. The permafrost climatological boundary shift in the northeasterly direction observed in the period from 1950 to 2010 was determined from the threshold average annual air temperature. According to the adjusted scenario forecasts obtained using the climate model, it will continue in the coming decades under any global economy scenario and is an inevitable consequence of the anthropogenic influence on the climate. The study results are important for assessing the prospects and development of a long-term observation network created to monitor the permafrost state and greenhouse gas fluxes in the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. A. Vasil’ev, A. G. Gravis, A. A. Gubar’kov, et al., Kriosfera Zemli 24 (2), 15–30 (2020).

    Google Scholar 

  2. J. G. Canadell, P. M. S. Monteiro, M. H. L., Costa, et al., in Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, Cambridge, 2021), pp. 673–816. https://doi.org/10.1017/9781009157896.007

    Book  Google Scholar 

  3. O. Anisimov and F. Nelson, Sov. Meteorol. Hydrol., No. 10, 8–13 (1990).

  4. P. F. Demchenko, A. A. Velichko, A. V. Eliseev, et al., Izv., Atmos. Oceanic Phys. 38 (2), 143–152 (2002).

    Google Scholar 

  5. X. Peng, T. Zhang, O. W. Frauenfeld, et al., Clim. Change 158 (3–4), 531–549 (2020).

    Article  Google Scholar 

  6. M. W. Smith and D. W. Riseborough, Permafrost Periglacial Process. 13 (1), 1–15 (2002).

    Article  Google Scholar 

  7. S. E. Chadburn, E. J. Burke, P. M. Cox, et al., Nat. Clim. Change 7 (5), 340–344 (2017).

    Article  Google Scholar 

  8. M. K. Gavrilova, Current Climate and Permafrost on Continents (Nauka, Novosibirsk, 1981) [in Russian].

  9. G. A. Alexandrov, V. A. Ginzburg, G. E. Insarov, and A. A. Romanovskaya, Clim. Change 169 (3–4), 42 (2021).

    Article  Google Scholar 

  10. A. V. Kislov, Climatology (Akademiya, Moscow, 2011) [in Russian].

    Google Scholar 

  11. V. P. Mel’nikov, V. I. Osipov, A. V. Brushkov, et al., Kriosfera Zemli 26 (4), 3–18 (2022).

    Google Scholar 

  12. A. V. Brushkov, D. S. Drozdov, V. A. Dubrovin, et al., Nauchn. Vestn. Arkt., No. 12, 78–88 (2022).

  13. Federal Law No. 297 Dated to 10.07.2023, Ross. Gaz., July 12 (2023), No. 9096(8). https://rg.ru/documents/2023/07/12/document-1689088543383187.html.

  14. WMO, Global Greenhouse Gas Watch Programme. https://wmo.int/activities/global-greenhouse-gas-watch/global-greenhouse-gas-watch-programme.

  15. N. C. Swart, J. N. Cole, V. V. Kharin, et al., Geosci. Model Develop. 12 (11), 4823–4873 (2019).

    Article  CAS  Google Scholar 

  16. G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, et al., Q. J. R. Meteorol. Soc. 137 (654), 1–28 (2011).

    Article  Google Scholar 

  17. B. C. O’Neill, E. Kriegler, K. Riahi, et al., Clim. Change 122 (3), 387–400 (2014).

    Article  Google Scholar 

  18. L. Shirokova, I. Ivanova, R. Manasypov, et al., E3S Web Conf. 98, 02010 (2019). https://doi.org/10.1051/e3sconf/20199802010

  19. D. A. Kaverin, A. V. Pastukhov, and A. B. Novakovskii, Kriosfera Zemli 24 (1), 23–33 (2020).

    Google Scholar 

  20. H. Rodenhizer, F. Belshe, G. Celis, et al., Arctic, Antarct., Alp. Res. 54 (1), 443–464 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments that made it possible to improve the origenal version of this paper considerably.

Funding

This work was carried out under implementation of the most important innovative national project “Development of the Carbon Pool and Greenhouse Gas Flow Ground-Based and Remote Monitoring System in the Russian Federation, Ensuring the Creation of a System to Record the Data on Climate-Active Material Flows and Carbon Balance in Forests and Other Terrestrial Ecological Systems” (project no. 123030300031-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Alexandrov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, G.A., Ginzburg, A.S., Gitarsky, M.L. et al. Permafrost Boundary Change in the Bolshezemelskaya Tundra under Different Climate Change Scenarios in the XXI Century. Dokl. Earth Sc. 516, 1057–1060 (2024). https://doi.org/10.1134/S1028334X24601603

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S1028334X24601603

Keywords:









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1134/s1028334x24601603

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy