Abstract
Manganese (Mn) is one of the most abundant naturally occurring elements in the Earth’s crust. It is essential for many living organisms but also has been broadly used in industry due to its chemical properties. Because of this wide usage, Mn has become an important environmental toxin. Since this metal has been associated to a parkinsonian-like syndrome called manganism, it has been extensively studied, with a major focus on its effects on neuronal cells. The research on Mn absorption, distribution, biological effects, and reliable biomarkers has been extensive; however, much has not been uncovered yet, and new findings have been continuously added to the literature. Several animal models have been contributing to this field, providing genetic, epigenetic, molecular, biochemical, and physiological basis for the whole understanding of neurotoxicity induced by Mn. This chapter will cover up-to-date data on kinetics and neurotoxic mechanisms and how different animal models have contributed to the knowledge on Mn-induced neurotoxicity.
Similar content being viewed by others
Abbreviations
- DAT:
-
Dopamine transporters
- NAD:
-
Nicotinamide adenine dinucleotide
- ADHD:
-
Attention-deficit/hyperactivity disorder
- ASK-1:
-
Apoptosis signal-regulating kinase1
- ATF4:
-
Activating transcription factor 4
- ATP:
-
Adenosine triphosphate
- BBB:
-
Blood-brain barrier
- Bcl-2:
-
B-cell lymphoma 2
- Ca:
-
Calcium
- CNS:
-
Central nervous system
- Cu:
-
Copper
- Cyt C:
-
Cytochrome c
- DA:
-
Dopamine
- DAT:
-
Dopamine transporter
- DCT:
-
Divalent cation transporter
- DMT1/NRAMP2:
-
Natural resistance-associated macrophage protein 2
- DNA:
-
Deoxyribonucleic acid
- eIF2α:
-
Eukaryotic initiation factor 2 alpha
- ERK:
-
Extracellular signal-regulated kinase
- FDOPA:
-
6-[(18)F]fluoro-l-dopa
- Fe:
-
Iron
- GABA:
-
Gamma-aminobutyric acid
- GFP:
-
Green fluorescent protein
- GI:
-
Gastrointestinal
- GPCR:
-
G-protein-coupled receptors
- HMGB1:
-
High mobility group protein B1
- HSP:
-
Heat shock protein
- IPD:
-
Idiopathic Parkinson’s disease
- IRE1:
-
Serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1
- JNK:
-
Jun N-terminal kinase
- L-DOPA:
-
Levodopa
- LRRK2:
-
Leucine-rich repeat kinase 2
- MCT:
-
Mn-citrate transporters
- Mg:
-
Magnesium
- MMT:
-
Methylcyclopentadienyl manganese tricarbonyl
- Mn:
-
Manganese
- MPTP:
-
Mitochondrial permeability transition pore
- MRI:
-
Magnetic resonance imaging
- NF-kB:
-
Nuclear factor kappa-light-chain-enhancer of activated B cells
- PC-12:
-
Pheochromocytoma cell line
- PD:
-
Parkinson’s disease
- PERK:
-
Protein kinase RNA-like endoplasmic reticulum kinase
- PET:
-
Positron emission tomography
- RNS:
-
Reactive nitrogen species
- ROS:
-
Reactive oxygen species
- SH-SY5Y:
-
Neuroblastoma cell line
- SLC:
-
Solute carrier family
- SPCA:
-
Secretory pathway Ca2+ ATPase
- Tf:
-
Transferrin
- TFEB:
-
Transcription factor EB
- TH:
-
Tyrosine hydroxylase
- TPN:
-
Total parenteral nutrition
- VMAT2:
-
Vesicular monoamine transporter type 2
- Xbp1:
-
X-box binding protein 1
- ZIP:
-
Zrt- and Irt-like proteins
- Zn:
-
Zinc
- Δψm:
-
Inner membrane potential
References
Agency of Toxic Substances and Disease Registry (ATSDR). (2000). Toxicological profile for manganese. U.S. Department of Health and Human Services Public Health Service.
Aschner, M. (2000). Manganese: Brain transport and emerging research needs. Environmental Health Perspectives, 108(Suppl 3), 429–432. https://doi.org/10.1289/ehp.00108s3429
Aschner, M., & Dorman, D. C. (2006). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25(3), 147–154. https://doi.org/10.2165/00139709-200625030-00002
Aschner, M., & Gannon, M. (1994). Manganese (Mn) transport across the rat blood-brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 33(3), 345–349.
Aschner, M., Erikson, K. M., Herrero Hernandez, E., & Tjalkens, R. (2009). Manganese and its role in Parkinson’s disease: From transport to neuropathology. Neuromolecular Medicine, 11(4), 252–266. https://doi.org/10.1007/s12017-009-8083-0
Au, C., Benedetto, A., Anderson, J., Labrousse, A., Erikson, K., Ewbank, J. J., & Aschner, M. (2009). SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PLoS One, 4(11), e7792. https://doi.org/10.1371/journal.pone.0007792
Avila, D. S., Benedetto, A., Au, C., Bornhorst, J., & Aschner, M. (2016a). Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC Pharmacology and Toxicology, 17(1), 54. https://doi.org/10.1186/s40360-016-0097-2
Avila, D. S., Gubert, P., Roos, D. H., Puntel, R. L., & Aschner, M. (2016b). Manganese. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of food and health (pp. 637–640). Academic. https://doi.org/10.1016/B978-0-12-384947-2.00441-4
Benedetto, A., Au, C., & Aschner, M. (2009). Manganese-induced dopaminergic neurodegeneration: Insights into mechanisms and genetics shared with Parkinson’s disease. Chemical Reviews, 109(10), 4862–4884. https://doi.org/10.1021/cr800536y
Benedetto, A., Au, C., Avila, D. S., Milatovic, D., & Aschner, M. (2010). Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genetics, 6(8), e1001084. https://doi.org/10.1371/journal.pgen.1001084
Bertinet, D. B., Tinivella, M., Balzola, F. A., de Francesco, A., Davini, O., Rizzo, L., Massarenti, P., Leonardi, M. A., & Balzola, F. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition, 24(4), 223–227.
Bjorklund, G., Dadar, M., Anderson, G., Chirumbolo, S., & Maes, M. (2020). Preventive treatments to slow substantia nigra damage and Parkinson’s disease progression: A critical perspective review. Pharmacological Research, 161, 105065. https://doi.org/10.1016/j.phrs.2020.105065
Bonilla-Ramirez, L., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2011). Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: A model to study parkinsonism. Biometals. https://doi.org/10.1007/s10534-011-9463-0
Bornhorst, J., Chakraborty, S., Meyer, S., Lohren, H., Brinkhaus, S. G., Knight, A. L., Caldwell, K. A., Caldwell, G. A., Karst, U., Schwerdtle, T., Bowman, A., & Aschner, M. (2014). The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallomics, 6(3), 476–490. https://doi.org/10.1039/c3mt00325f
Bowman, A. B., Kwakye, G. F., Herrero Hernandez, E., & Aschner, M. (2011). Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 25(4), 191–203. https://doi.org/10.1016/j.jtemb.2011.08.144
Brissot, P., Bardou-Jacquet, E., Jouanolle, A. M., & Loreal, O. (2011). Iron disorders of genetic origen: A changing world. Trends in Molecular Medicine, 17(12), 707–713. https://doi.org/10.1016/j.molmed.2011.07.004
Butterworth, R. F., Spahr, L., Fontaine, S., & Layrargues, G. P. (1995). Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metabolic Brain Disease, 10(4), 259–267.
Cai, T., Yao, T., Zheng, G., Chen, Y., Du, K., Cao, Y., Shen, X., Chen, J., & Luo, W. (2010). Manganese induces the overexpression of alpha-synuclein in PC12 cells via ERK activation. Brain Research, 1359, 201–207. https://doi.org/10.1016/j.brainres.2010.08.055
Chen, M. K., Lee, J. S., McGlothan, J. L., Furukawa, E., Adams, R. J., Alexander, M., Wong, D. F., & Guilarte, T. R. (2006). Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology, 27(2), 229–236.
Chen, P., DeWitt, M. R., Bornhorst, J., Soares, F. A., Mukhopadhyay, S., Bowman, A. B., & Aschner, M. (2015). Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease. Metallomics, 7(2), 289–298. https://doi.org/10.1039/c4mt00292j
Chen, J., Su, P., Luo, W., & Chen, J. (2018). Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochemical and Biophysical Research Communications, 498(1), 171–177. https://doi.org/10.1016/j.bbrc.2018.02.007
Conway, O., Akpinar, H. A., Rogov, V. V., & Kirkin, V. (2020). Selective autophagy receptors in neuronal health and disease. Journal of Molecular Biology, 432(8), 2483–2509. https://doi.org/10.1016/j.jmb.2019.10.013
Criswell, S. R., Perlmutter, J. S., Videen TO, Moerlein, S. M., Flores, H. P., Birke, A. M., & Racette, B. A. (2011). Reduced uptake of [(1)F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, 76(15), 1296–1301. https://doi.org/10.1212/WNL.0b013e3182152830
Dobson, A. W., Erikson, K. M., & Aschner, M. (2004). Manganese neurotoxicity. Annals of the New York Academy of Sciences, 1012, 115–128.
Donaldson, J., LaBella, F. S., & Gesser, D. (1981). Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity. Neurotoxicology, 2(1), 53–64.
Donaldson, J., McGregor, D., & LaBella, F. (1982). Manganese neurotoxicity: A model for free radical mediated neurodegeneration? Canadian Journal of Physiology and Pharmacology, 60(11), 1398–1405.
Dorman, D. C., Struve, M. F., James, R. A., McManus, B. E., Marshall, M. W., & Wong, B. A. (2001). Influence of dietary manganese on the pharmacokinetics of inhaled manganese sulfate in male CD rats. Toxicological Sciences, 60(2), 242–251.
Dorman, D. C., Struve, M. F., Marshall, M. W., Parkinson, C. U., James, R. A., & Wong, B. A. (2006). Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicological Sciences, 92(1), 201–210. https://doi.org/10.1093/toxsci/kfj206
Erikson, K. M., & Aschner, M. (2003). Manganese neurotoxicity and glutamate-GABA interaction. Neurochemistry International, 43(4–5), 475–480. https://doi.org/10.1016/s0197-0186(03)00037-8
Erikson, K. M., Dorman, D. C., Lash, L. H., & Aschner, M. (2007). Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicological Sciences, 97(2), 459–466. https://doi.org/10.1093/toxsci/kfm044
Eriksson, H., Tedroff, J., Thuomas, K. A., Aquilonius, S. M., Hartvig, P., Fasth, K. J., Bjurling, P., Langstrom, B., Hedstrom, K. G., & Heilbronn, E. (1992). Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Archives of Toxicology, 66(6), 403–407.
Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104(3), 420–432. https://doi.org/10.1016/j.envres.2007.03.002
Finley, J. W., & Davis, C. D. (1999). Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern? BioFactors, 10(1), 15–24.
Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., & Aschner, M. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103(1), 116–124.
Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., & Andrews, N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1148–1153.
Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95(1), 205–214.
Garcia-Aranda, J. A., Wapnir, R. A., & Lifshitz, F. (1983). In vivo intestinal absorption of manganese in the rat. The Journal of Nutrition, 113(12), 2601–2607.
Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1990). Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. The Biochemical Journal, 266(2), 329–334.
Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S. R., Jangamreddy, J. R., Mehrpour, M., Christoffersson, J., Chaabane, W., Moghadam, A. R., Kashani, H. H., Hashemi, M., Owji, A. A., & Los, M. J. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 112, 24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004
Guilarte, T. R. (2010). APLP1, Alzheimer’s-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Neurotoxicology, 31(5), 572–574. https://doi.org/10.1016/j.neuro.2010.02.004
Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. The American Journal of Physiology, 258(5 Pt 1), C755–C786.
Hawari, I., Eskandar, M. B., & Alzeer, S. (2020). The role of Lead, manganese, and zinc in autism Spectrum disorders (ASDs) and attention-deficient hyperactivity disorder (ADHD): A case-control study on Syrian children affected by the Syrian crisis. Biological Trace Element Research, 197(1), 107–114. https://doi.org/10.1007/s12011-020-02146-3
Hazell, A. S., & Butterworth, R. F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proceedings of the Society for Experimental Biology and Medicine, 222(2), 99–112. https://doi.org/10.1046/j.1525-1373.1999.d01-120.x
He, L., Girijashanker, K., Dalton, T. P., Reed, J., Li, H., Soleimani, M., & Nebert, D. W. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: Characterization of transporter properties. Molecular Pharmacology, 70(1), 171–180.
Hong, S. B., Kim, J. W., Choi, B. S., Hong, Y. C., Park, E. J., Shin, M. S., Kim, B. N., Yoo, H. J., Cho, I. H., Bhang, S. Y., & Cho, S. C. (2014). Blood manganese levels in relation to comorbid behavioral and emotional problems in children with attention-deficit/hyperactivity disorder. Psychiatry Research, 220(1–2), 418–425. https://doi.org/10.1016/j.psychres.2014.05.049
Iyare, P. U. (2019). The effects of manganese exposure from drinking water on school-age children: A systematic review. Neurotoxicology, 73, 1–7. https://doi.org/10.1016/j.neuro.2019.02.013
Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry, 79(4), 368–376. https://doi.org/10.1136/jnnp.2007.131045
Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692. https://doi.org/10.1016/j.envpol.2007.06.056
Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., & Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death and Differentiation, 7(12), 1166–1173. https://doi.org/10.1038/sj.cdd.4400783
Leyva-Illades, D., Chen, P., Zogzas, C. E., Hutchens, S., Mercado, J. M., Swaim, C. D., Morrisett, R. A., Bowman, A. B., Aschner, M., & Mukhopadhyay, S. (2014). SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. The Journal of Neuroscience, 34(42), 14079–14095. https://doi.org/10.1523/JNEUROSCI.2329-14.2014
Li, Y., Cha, C., Lv, X., Liu, J., He, J., Pang, Q., Meng, L., Kuang, H., & Fan, R. (2020). Association between 10 urinary heavy metal exposure and attention deficit hyperactivity disorder for children. Environmental Science and Pollution Research International, 27(25), 31233–31242. https://doi.org/10.1007/s11356-020-09421-9
Lin, G., Li, X., Cheng, X., Zhao, N., & Zheng, W. (2020). Manganese exposure aggravates beta-amyloid pathology by microglial activation. Frontiers in Aging Neuroscience, 12, 556008. https://doi.org/10.3389/fnagi.2020.556008
Liu, C., Yan, D. Y., Wang, C., Ma, Z., Deng, Y., Liu, W., & Xu, B. (2020). IRE1 signaling pathway mediates protective autophagic response against manganese-induced neuronal apoptosis in vivo and in vitro. Science of the Total Environment, 712, 136480. https://doi.org/10.1016/j.scitotenv.2019.136480
Ljung, K., & Vahter, M. (2007). Time to re-evaluate the guideline value for manganese in drinking water? Environmental Health Perspectives, 115(11), 1533–1538. https://doi.org/10.1289/ehp.10316
Lucchini, R. G., Albini, E., Benedetti, L., Borghesi, S., Coccaglio, R., Malara, E. C., Parrinello, G., Garattini, S., Resola, S., & Alessio, L. (2007). High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. American Journal of Industrial Medicine, 50(11), 788–800. https://doi.org/10.1002/ajim.20494
Lynam, D. R., Roos, J. W., Pfeifer, G. D., Fort, B. F., & Pullin, T. G. (1999). Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology, 20(2–3), 145–150.
Ma, Z., Wang, C., Liu, C., Yan, D. Y., Deng, Y., Liu, W., Yang, T. Y., Xu, Z. F., & Xu, B. (2017). The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells. Environmental Toxicology, 32(12), 2428–2439. https://doi.org/10.1002/tox.22457
Malecki, E. A. (2001). Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Research Bulletin, 55(2), 225–228. https://doi.org/10.1016/s0361-9230(01)00456-7
Marti-Sanchez, L., Ortigoza-Escobar, J. D., Darling, A., Villaronga, M., Baide, H., Molero-Luis, M., Batllori, M., Vanegas, M. I., Muchart, J., Aquino, L., Artuch, R., Macaya, A., Kurian, M. A., & Duenas, P. (2018). Hypermanganesemia due to mutations in SLC39A14: Further insights into Mn deposition in the central nervous system. Orphanet Journal of Rare Diseases, 13(1), 28. https://doi.org/10.1186/s13023-018-0758-x
Mergler, D., Huel, G., Bowler, R., Iregren, A., Belanger, S., Baldwin, M., Tardif, R., Smargiassi, A., & Martin, L. (1994). Nervous system dysfunction among workers with long-term exposure to manganese. Environmental Research, 64(2), 151–180. https://doi.org/10.1006/enrs.1994.1013
Milatovic, D., Yin, Z., Gupta, R. C., Sidoryk, M., Albrecht, J., Aschner, J. L., & Aschner, M. (2007). Manganese induces oxidative impairment in cultured rat astrocytes. Toxicological Sciences, 98(1), 198–205. https://doi.org/10.1093/toxsci/kfm095
Morello, M., Canini, A., Mattioli, P., Sorge, R. P., Alimonti, A., Bocca, B., Forte, G., Martorana, A., Bernardi, G., & Sancesario, G. (2008). Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats: An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology, 29(1), 60–72. https://doi.org/10.1016/j.neuro.2007.09.001
Mukhopadhyay, S., & Linstedt, A. D. (2011). Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 858–863. https://doi.org/10.1073/pnas.1013642108
Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., Cookson, M. R., & Youle, R. J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology, 8(1), e1000298. https://doi.org/10.1371/journal.pbio.1000298
Newland, M. C., & Weiss, B. (1992). Persistent effects of manganese on effortful responding and their relationship to manganese accumulation in the primate globus pallidus. Toxicology and Applied Pharmacology, 113(1), 87–97.
Nong, A., Teeguarden, J. G., Clewell, H. J., 3rd, Dorman, D. C., & Andersen, M. E. (2008). Pharmacokinetic modeling of manganese in the rat IV: Assessing factors that contribute to brain accumulation during inhalation exposure. Journal of Toxicology and Environmental Health. Part A, 71(7), 413–426. https://doi.org/10.1080/15287390701838697
Ono, J., Harada, K., Kodaka, R., Sakurai, K., Tajiri, H., Takagi, Y., Nagai, T., Harada, T., Nihei, A., Okada, A., et al. (1995). Manganese deposition in the brain during long-term total parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition, 19(4), 310–312.
Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. Neurotoxicology, 20(2–3), 227–238.
Peneder, T. M., Scholze, P., Berger, M. L., Reither, H., Heinze, G., Bertl, J., Bauer, J., Richfield, E. K., Hornykiewicz, O., & Pifl, C. (2011). Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience, 180, 280–292. https://doi.org/10.1016/j.neuroscience.2011.02.017
Peres, T. V., Arantes, L. P., Miah, M. R., Bornhorst, J., Schwerdtle, T., Bowman, A. B., Leal, R. B., & Aschner, M. (2018). Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in manganese toxicity. Neurotoxicity Research, 34(3), 584–596. https://doi.org/10.1007/s12640-018-9915-1
Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66(8), 675–682. https://doi.org/10.1097/nen.0b013e31812503cf
Prabhakaran, K., Chapman, G. D., & Gunasekar, P. G. (2011). Alpha-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-kappa B-mediated pathway. Toxicology Mechanisms and Methods, 21(6), 435–443. https://doi.org/10.3109/15376516.2011.560210
Quadri, M., Federico, A., Zhao, T., Breedveld, G. J., Battisti, C., Delnooz, C., Severijnen, L. A., Di Toro, M. L., Mignarri, A., Monti, L., Sanna, A., Lu, P., Punzo, F., Cossu, G., Willemsen, R., Rasi, F., Oostra, B. A., van de Warrenburg, B. P., & Bonifati, V. (2012). Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. American Journal of Human Genetics, 90(3), 467–477. https://doi.org/10.1016/j.ajhg.2012.01.017
Riley, L. G., Cowley, M. J., Gayevskiy, V., Roscioli, T., Thorburn, D. R., Prelog, K., Bahlo, M., Sue, C. M., Balasubramaniam, S., & Christodoulou, J. (2017). A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. Journal of Inherited Metabolic Disease, 40(2), 261–269. https://doi.org/10.1007/s10545-016-0010-6
Roth, J. A. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, 39(1), 45–57. https://doi.org/10.4067/s0716-97602006000100006
Roth, J. A. (2009). Are there common biochemical and molecular mechanisms controlling manganism and parkinsonism. Neuromolecular Medicine, 11(4), 281–296. https://doi.org/10.1007/s12017-009-8088-8
Salazar, J., Mena, N., Hunot, S., Prigent, A., Alvarez-Fischer, D., Arredondo, M., Duyckaerts, C., Sazdovitch, V., Zhao, L., Garrick, L. M., Nunez, M. T., Garrick, M. D., Raisman-Vozari, R., & Hirsch, E. C. (2008). Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18578–18583. https://doi.org/10.1073/pnas.0804373105
Santamaria, A. B., Cushing, C. A., Antonini, J. M., Finley, B. L., & Mowat, F. S. (2007). State-of-the-science review: Does manganese exposure during welding pose a neurological risk? Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 10(6), 417–465. https://doi.org/10.1080/15287390600975004
Schneider, J. S., Decamp, E., Koser, A. J., Fritz, S., Gonczi, H., Syversen, T., & Guilarte, T. R. (2006). Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Research, 1118(1), 222–231. https://doi.org/10.1016/j.brainres.2006.08.054
Seth, P. K., & Chandra, S. V. (1984). Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology, 5(1), 67–76.
Settivari, R., Levora, J., & Nass, R. (2009). The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and Parkinson disease. The Journal of Biological Chemistry, 284(51), 35758–35768. https://doi.org/10.1074/jbc.M109.051409
Sikk, K., Haldre, S., Aquilonius, S. M., & Taba, P. (2011). Manganese-induced parkinsonism due to Ephedrone abuse. Parkinsons Disease, 2011, 865319. https://doi.org/10.4061/2011/865319
Skalny, A. V., Mazaletskaya, A. L., Ajsuvakova, O. P., Bjorklund, G., Skalnaya, M. G., Notova, S. V., Chernova, L. N., Skalny, A. A., Burtseva, T. I., & Tinkov, A. A. (2020). Hair trace element concentrations in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Journal of Trace Elements in Medicine and Biology, 61, 126539. https://doi.org/10.1016/j.jtemb.2020.126539
Sriram, K., Lin, G. X., Jefferson, A. M., Roberts, J. R., Wirth, O., Hayashi, Y., Krajnak, K. M., Soukup, J. M., Ghio, A. J., Reynolds, S. H., Castranova, V., Munson, A. E., & Antonini, J. M. (2010). Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. The FASEB Journal, 24(12), 4989–5002. https://doi.org/10.1096/fj.10-163964
Srivastava, R. A., & Jain, J. C. (2002). Scavenger receptor class B type I expression and elemental analysis in cerebellum and parietal cortex regions of the Alzheimer’s disease brain. Journal of the Neurological Sciences, 196(1–2), 45–52. https://doi.org/10.1016/s0022-510x(02)00026-6
Stastny, D., Vogel, R. S., & Picciano, M. F. (1984). Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. The American Journal of Clinical Nutrition, 39(6), 872–878.
Takeda, A., Sawashita, J., & Okada, S. (1995). Biological half-lives of zinc and manganese in rat brain. Brain Research, 695(1), 53–58.
Tinkov, A. A., Mazaletskaya, A. L., Ajsuvakova, O. P., Bjorklund, G., Huang, P. T., Chernova, L. N., Skalny, A. A., & Skalny, A. V. (2020). ICP-MS assessment of hair essential trace elements and minerals in Russian preschool and primary school children with attention-deficit/hyperactivity disorder (ADHD). Biological Trace Element Research, 196(2), 400–409. https://doi.org/10.1007/s12011-019-01947-5
Tong, M., Dong, M., & de la Monte, S. M. (2009). Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with Lewy bodies: Potential role of manganese neurotoxicity. Journal of Alzheimer’s Disease, 16(3), 585–599. https://doi.org/10.3233/JAD-2009-0995
Tong, Y., Yang, H., Tian, X., Wang, H., Zhou, T., Zhang, S., Yu, J., Zhang, T., Fan, D., Guo, X., Tabira, T., Kong, F., Chen, Z., Xiao, W., & Chui, D. (2014). High manganese, a risk for Alzheimer’s disease: High manganese induces amyloid-beta related cognitive impairment. Journal of Alzheimer’s Disease, 42(3), 865–878. https://doi.org/10.3233/JAD-140534
Tuschl, K., Mills, P. B., Parsons, H., Malone, M., Fowler, D., Bitner-Glindzicz, M., & Clayton, P. T. (2008). Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia – A new metabolic disorder. Journal of Inherited Metabolic Disease, 31(2), 151–163. https://doi.org/10.1007/s10545-008-0813-1
Tuschl, K., Clayton, P. T., Gospe, S. M., Jr., Gulab, S., Ibrahim, S., Singhi, P., Aulakh, R., Ribeiro, R. T., Barsottini, O. G., Zaki, M. S., Del Rosario, M. L., Dyack, S., Price, V., Rideout, A., Gordon, K., Wevers, R. A., Chong, W. K., & Mills, P. B. (2012). Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. American Journal of Human Genetics, 90(3), 457–466. https://doi.org/10.1016/j.ajhg.2012.01.018
Tuschl, K., Meyer, E., Valdivia, L. E., Zhao, N., Dadswell, C., Abdul-Sada, A., Hung, C. Y., Simpson, M. A., Chong, W. K., Jacques, T. S., Woltjer, R. L., Eaton, S., Gregory, A., Sanford, L., Kara, E., Houlden, H., Cuno, S. M., Prokisch, H., Valletta, L., Tiranti, V., Younis, R., Maher, E. R., Spencer, J., Straatman-Iwanowska, A., Gissen, P., Selim, L. A., Pintos-Morell, G., Coroleu-Lletget, W., Mohammad, S. S., Yoganathan, S., Dale, R. C., Thomas, M., Rihel, J., Bodamer, O. A., Enns, C. A., Hayflick, S. J., Clayton, P. T., Mills, P. B., Kurian, M. A., & Wilson, S. W. (2016). Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nature Communications, 7, 11601. https://doi.org/10.1038/ncomms11601
Ulmer, T. S., & Bax, A. (2005). Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. The Journal of Biological Chemistry, 280(52), 43179–43187. https://doi.org/10.1074/jbc.M507624200
Van Swinderen, B., & Andretic, R. (2011). Dopamine in Drosophila: Setting arousal thresholds in a miniature brain. Proceedings of the Biological Sciences, 278(1707), 906–913. https://doi.org/10.1098/rspb.2010.2564
von Campenhausen, S., Bornschein, B., Wick, R., Botzel, K., Sampaio, C., Poewe, W., Oertel, W., Siebert, U., Berger, K., & Dodel, R. (2005). Prevalence and incidence of Parkinson’s disease in Europe. European Neuropsychopharmacology, 15(4), 473–490. https://doi.org/10.1016/j.euroneuro.2005.04.007
Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., LoIacono, N. J., Cheng, Z., Zheng, Y., & Graziano, J. H. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114(1), 124–129.
Weissenborn, K., Ehrenheim, C., Hori, A., Kubicka, S., & Manns, M. P. (1995). Pallidal lesions in patients with liver cirrhosis: Clinical and MRI evaluation. Metabolic Brain Disease, 10(3), 219–231.
Winslow, J. W. W., Limesand, K. H., & Zhao, N. (2020). The functions of ZIP8, ZIP14, and ZnT10 in the regulation of systemic manganese homeostasis. International Journal of Molecular Sciences, 21(9), 3304. https://doi.org/10.3390/ijms21093304
Yan, D. Y., & Xu, B. (2020). The role of autophagy in manganese-induced neurotoxicity. Frontiers in Neuroscience, 14, 574750. https://doi.org/10.3389/fnins.2020.574750
Yan, D., Ma, Z., Liu, C., Wang, C., Deng, Y., Liu, W., & Xu, B. (2019). Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells. Food and Chemical Toxicology, 124, 336–348. https://doi.org/10.1016/j.fct.2018.12.027
Yin, Z., Aschner, J. L., dos Santos, A. P., & Aschner, M. (2008). Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Research, 1203, 1–11. https://doi.org/10.1016/j.brainres.2008.01.079
Yin, Z., Jiang, H., Lee, E. S., Ni, M., Erikson, K. M., Milatovic, D., Bowman, A. B., & Aschner, M. (2010). Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry, 112(5), 1190–1198. https://doi.org/10.1111/j.1471-4159.2009.06534.x
Zaki, M. S., Issa, M. Y., Elbendary, H. M., El-Karaksy, H., Hosny, H., Ghobrial, C., El Safty, A., El-Hennawy, A., Oraby, A., Selim, L., & Abdel-Hamid, M. S. (2018). Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel SLC30A10 mutations and further phenotype delineation. Clinical Genetics, 93(4), 905–912. https://doi.org/10.1111/cge.13184
Zayed, J., Thibault, C., Gareau, L., & Kennedy, G. (1999). Airborne manganese particulates and methylcyclopentadienyl manganese tricarbonyl (MMT) at selected outdoor sites in Montreal. Neurotoxicology, 20(2–3), 151–157.
Zhang, S., Fu, J., & Zhou, Z. (2004). In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicology In Vitro, 18(1), 71–77. https://doi.org/10.1016/j.tiv.2003.09.002
Zhang, J., Cao, R., Cai, T., Aschner, M., Zhao, F., Yao, T., Chen, Y., Cao, Z., Luo, W., & Chen, J. (2013). The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotoxicity Research, 24(4), 478–490. https://doi.org/10.1007/s12640-013-9392-5
Zhang, Z., Yan, J., Bowman, A. B., Bryan, M. R., Singh, R., & Aschner, M. (2020). Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy, 16(8), 1506–1523. https://doi.org/10.1080/15548627.2019.1688488
Zlotkin, S. H., Atkinson, S., & Lockitch, G. (1995). Trace elements in nutrition for premature infants. Clinics in Perinatology, 22(1), 223–240.
Acknowledgments
Authors are thankful to the funding grants NIH R01ES07331 and R01ES10563 (MA, ABB), INCT-EN, CAPES, CNPq, and FAPERGS (DSA and JBTR).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Ávila, D.S. et al. (2021). Manganese Neurotoxicity. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_3-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-71519-9_3-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71519-9
Online ISBN: 978-3-030-71519-9
eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences
