Content-Length: 554008 | pFad | https://link.springer.com/10.1007/978-3-030-71519-9_3-1

86400 Manganese Neurotoxicity | Springer Nature Link (formerly SpringerLink)
Skip to main content

Manganese Neurotoxicity

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Manganese (Mn) is one of the most abundant naturally occurring elements in the Earth’s crust. It is essential for many living organisms but also has been broadly used in industry due to its chemical properties. Because of this wide usage, Mn has become an important environmental toxin. Since this metal has been associated to a parkinsonian-like syndrome called manganism, it has been extensively studied, with a major focus on its effects on neuronal cells. The research on Mn absorption, distribution, biological effects, and reliable biomarkers has been extensive; however, much has not been uncovered yet, and new findings have been continuously added to the literature. Several animal models have been contributing to this field, providing genetic, epigenetic, molecular, biochemical, and physiological basis for the whole understanding of neurotoxicity induced by Mn. This chapter will cover up-to-date data on kinetics and neurotoxic mechanisms and how different animal models have contributed to the knowledge on Mn-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DAT:

Dopamine transporters

NAD:

Nicotinamide adenine dinucleotide

ADHD:

Attention-deficit/hyperactivity disorder

ASK-1:

Apoptosis signal-regulating kinase1

ATF4:

Activating transcription factor 4

ATP:

Adenosine triphosphate

BBB:

Blood-brain barrier

Bcl-2:

B-cell lymphoma 2

Ca:

Calcium

CNS:

Central nervous system

Cu:

Copper

Cyt C:

Cytochrome c

DA:

Dopamine

DAT:

Dopamine transporter

DCT:

Divalent cation transporter

DMT1/NRAMP2:

Natural resistance-associated macrophage protein 2

DNA:

Deoxyribonucleic acid

eIF2α:

Eukaryotic initiation factor 2 alpha

ERK:

Extracellular signal-regulated kinase

FDOPA:

6-[(18)F]fluoro-l-dopa

Fe:

Iron

GABA:

Gamma-aminobutyric acid

GFP:

Green fluorescent protein

GI:

Gastrointestinal

GPCR:

G-protein-coupled receptors

HMGB1:

High mobility group protein B1

HSP:

Heat shock protein

IPD:

Idiopathic Parkinson’s disease

IRE1:

Serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1

JNK:

Jun N-terminal kinase

L-DOPA:

Levodopa

LRRK2:

Leucine-rich repeat kinase 2

MCT:

Mn-citrate transporters 

Mg:

Magnesium

MMT:

Methylcyclopentadienyl manganese tricarbonyl

Mn:

Manganese

MPTP:

Mitochondrial permeability transition pore

MRI:

Magnetic resonance imaging

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PC-12:

Pheochromocytoma cell line

PD:

Parkinson’s disease

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PET:

Positron emission tomography

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SH-SY5Y:

Neuroblastoma cell line

SLC:

Solute carrier family

SPCA:

Secretory pathway Ca2+ ATPase

Tf:

Transferrin

TFEB:

Transcription factor EB

TH:

Tyrosine hydroxylase

TPN:

Total parenteral nutrition

VMAT2:

Vesicular monoamine transporter type 2

Xbp1:

X-box binding protein 1

ZIP:

Zrt- and Irt-like proteins

Zn:

Zinc

Δψm:

Inner membrane potential

References

  • Agency of Toxic Substances and Disease Registry (ATSDR). (2000). Toxicological profile for manganese. U.S. Department of Health and Human Services Public Health Service.

    Google Scholar 

  • Aschner, M. (2000). Manganese: Brain transport and emerging research needs. Environmental Health Perspectives, 108(Suppl 3), 429–432. https://doi.org/10.1289/ehp.00108s3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aschner, M., & Dorman, D. C. (2006). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25(3), 147–154. https://doi.org/10.2165/00139709-200625030-00002

    Article  CAS  PubMed  Google Scholar 

  • Aschner, M., & Gannon, M. (1994). Manganese (Mn) transport across the rat blood-brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 33(3), 345–349.

    Article  CAS  Google Scholar 

  • Aschner, M., Erikson, K. M., Herrero Hernandez, E., & Tjalkens, R. (2009). Manganese and its role in Parkinson’s disease: From transport to neuropathology. Neuromolecular Medicine, 11(4), 252–266. https://doi.org/10.1007/s12017-009-8083-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au, C., Benedetto, A., Anderson, J., Labrousse, A., Erikson, K., Ewbank, J. J., & Aschner, M. (2009). SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PLoS One, 4(11), e7792. https://doi.org/10.1371/journal.pone.0007792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila, D. S., Benedetto, A., Au, C., Bornhorst, J., & Aschner, M. (2016a). Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC Pharmacology and Toxicology, 17(1), 54. https://doi.org/10.1186/s40360-016-0097-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila, D. S., Gubert, P., Roos, D. H., Puntel, R. L., & Aschner, M. (2016b). Manganese. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of food and health (pp. 637–640). Academic. https://doi.org/10.1016/B978-0-12-384947-2.00441-4

    Chapter  Google Scholar 

  • Benedetto, A., Au, C., & Aschner, M. (2009). Manganese-induced dopaminergic neurodegeneration: Insights into mechanisms and genetics shared with Parkinson’s disease. Chemical Reviews, 109(10), 4862–4884. https://doi.org/10.1021/cr800536y

    Article  CAS  PubMed  Google Scholar 

  • Benedetto, A., Au, C., Avila, D. S., Milatovic, D., & Aschner, M. (2010). Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genetics, 6(8), e1001084. https://doi.org/10.1371/journal.pgen.1001084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertinet, D. B., Tinivella, M., Balzola, F. A., de Francesco, A., Davini, O., Rizzo, L., Massarenti, P., Leonardi, M. A., & Balzola, F. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition, 24(4), 223–227.

    Article  CAS  Google Scholar 

  • Bjorklund, G., Dadar, M., Anderson, G., Chirumbolo, S., & Maes, M. (2020). Preventive treatments to slow substantia nigra damage and Parkinson’s disease progression: A critical perspective review. Pharmacological Research, 161, 105065. https://doi.org/10.1016/j.phrs.2020.105065

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Ramirez, L., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2011). Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: A model to study parkinsonism. Biometals. https://doi.org/10.1007/s10534-011-9463-0

  • Bornhorst, J., Chakraborty, S., Meyer, S., Lohren, H., Brinkhaus, S. G., Knight, A. L., Caldwell, K. A., Caldwell, G. A., Karst, U., Schwerdtle, T., Bowman, A., & Aschner, M. (2014). The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallomics, 6(3), 476–490. https://doi.org/10.1039/c3mt00325f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman, A. B., Kwakye, G. F., Herrero Hernandez, E., & Aschner, M. (2011). Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 25(4), 191–203. https://doi.org/10.1016/j.jtemb.2011.08.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brissot, P., Bardou-Jacquet, E., Jouanolle, A. M., & Loreal, O. (2011). Iron disorders of genetic origen: A changing world. Trends in Molecular Medicine, 17(12), 707–713. https://doi.org/10.1016/j.molmed.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  • Butterworth, R. F., Spahr, L., Fontaine, S., & Layrargues, G. P. (1995). Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metabolic Brain Disease, 10(4), 259–267.

    Article  CAS  Google Scholar 

  • Cai, T., Yao, T., Zheng, G., Chen, Y., Du, K., Cao, Y., Shen, X., Chen, J., & Luo, W. (2010). Manganese induces the overexpression of alpha-synuclein in PC12 cells via ERK activation. Brain Research, 1359, 201–207. https://doi.org/10.1016/j.brainres.2010.08.055

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. K., Lee, J. S., McGlothan, J. L., Furukawa, E., Adams, R. J., Alexander, M., Wong, D. F., & Guilarte, T. R. (2006). Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology, 27(2), 229–236.

    Article  CAS  Google Scholar 

  • Chen, P., DeWitt, M. R., Bornhorst, J., Soares, F. A., Mukhopadhyay, S., Bowman, A. B., & Aschner, M. (2015). Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease. Metallomics, 7(2), 289–298. https://doi.org/10.1039/c4mt00292j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Su, P., Luo, W., & Chen, J. (2018). Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochemical and Biophysical Research Communications, 498(1), 171–177. https://doi.org/10.1016/j.bbrc.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  • Conway, O., Akpinar, H. A., Rogov, V. V., & Kirkin, V. (2020). Selective autophagy receptors in neuronal health and disease. Journal of Molecular Biology, 432(8), 2483–2509. https://doi.org/10.1016/j.jmb.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  • Criswell, S. R., Perlmutter, J. S., Videen TO, Moerlein, S. M., Flores, H. P., Birke, A. M., & Racette, B. A. (2011). Reduced uptake of [(1)F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, 76(15), 1296–1301. https://doi.org/10.1212/WNL.0b013e3182152830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson, A. W., Erikson, K. M., & Aschner, M. (2004). Manganese neurotoxicity. Annals of the New York Academy of Sciences, 1012, 115–128.

    Article  CAS  Google Scholar 

  • Donaldson, J., LaBella, F. S., & Gesser, D. (1981). Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity. Neurotoxicology, 2(1), 53–64.

    CAS  PubMed  Google Scholar 

  • Donaldson, J., McGregor, D., & LaBella, F. (1982). Manganese neurotoxicity: A model for free radical mediated neurodegeneration? Canadian Journal of Physiology and Pharmacology, 60(11), 1398–1405.

    Article  CAS  Google Scholar 

  • Dorman, D. C., Struve, M. F., James, R. A., McManus, B. E., Marshall, M. W., & Wong, B. A. (2001). Influence of dietary manganese on the pharmacokinetics of inhaled manganese sulfate in male CD rats. Toxicological Sciences, 60(2), 242–251.

    Article  CAS  Google Scholar 

  • Dorman, D. C., Struve, M. F., Marshall, M. W., Parkinson, C. U., James, R. A., & Wong, B. A. (2006). Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicological Sciences, 92(1), 201–210. https://doi.org/10.1093/toxsci/kfj206

    Article  CAS  PubMed  Google Scholar 

  • Erikson, K. M., & Aschner, M. (2003). Manganese neurotoxicity and glutamate-GABA interaction. Neurochemistry International, 43(4–5), 475–480. https://doi.org/10.1016/s0197-0186(03)00037-8

    Article  CAS  PubMed  Google Scholar 

  • Erikson, K. M., Dorman, D. C., Lash, L. H., & Aschner, M. (2007). Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicological Sciences, 97(2), 459–466. https://doi.org/10.1093/toxsci/kfm044

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, H., Tedroff, J., Thuomas, K. A., Aquilonius, S. M., Hartvig, P., Fasth, K. J., Bjurling, P., Langstrom, B., Hedstrom, K. G., & Heilbronn, E. (1992). Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Archives of Toxicology, 66(6), 403–407.

    Article  CAS  Google Scholar 

  • Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104(3), 420–432. https://doi.org/10.1016/j.envres.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  • Finley, J. W., & Davis, C. D. (1999). Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern? BioFactors, 10(1), 15–24.

    Article  CAS  Google Scholar 

  • Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., & Aschner, M. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103(1), 116–124.

    Article  CAS  Google Scholar 

  • Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., & Andrews, N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1148–1153.

    Article  CAS  Google Scholar 

  • Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95(1), 205–214.

    Article  CAS  Google Scholar 

  • Garcia-Aranda, J. A., Wapnir, R. A., & Lifshitz, F. (1983). In vivo intestinal absorption of manganese in the rat. The Journal of Nutrition, 113(12), 2601–2607.

    Article  CAS  Google Scholar 

  • Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1990). Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. The Biochemical Journal, 266(2), 329–334.

    Article  CAS  Google Scholar 

  • Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S. R., Jangamreddy, J. R., Mehrpour, M., Christoffersson, J., Chaabane, W., Moghadam, A. R., Kashani, H. H., Hashemi, M., Owji, A. A., & Los, M. J. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 112, 24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  • Guilarte, T. R. (2010). APLP1, Alzheimer’s-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Neurotoxicology, 31(5), 572–574. https://doi.org/10.1016/j.neuro.2010.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. The American Journal of Physiology, 258(5 Pt 1), C755–C786.

    Article  CAS  Google Scholar 

  • Hawari, I., Eskandar, M. B., & Alzeer, S. (2020). The role of Lead, manganese, and zinc in autism Spectrum disorders (ASDs) and attention-deficient hyperactivity disorder (ADHD): A case-control study on Syrian children affected by the Syrian crisis. Biological Trace Element Research, 197(1), 107–114. https://doi.org/10.1007/s12011-020-02146-3

    Article  CAS  PubMed  Google Scholar 

  • Hazell, A. S., & Butterworth, R. F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proceedings of the Society for Experimental Biology and Medicine, 222(2), 99–112. https://doi.org/10.1046/j.1525-1373.1999.d01-120.x

    Article  CAS  PubMed  Google Scholar 

  • He, L., Girijashanker, K., Dalton, T. P., Reed, J., Li, H., Soleimani, M., & Nebert, D. W. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: Characterization of transporter properties. Molecular Pharmacology, 70(1), 171–180.

    Article  CAS  Google Scholar 

  • Hong, S. B., Kim, J. W., Choi, B. S., Hong, Y. C., Park, E. J., Shin, M. S., Kim, B. N., Yoo, H. J., Cho, I. H., Bhang, S. Y., & Cho, S. C. (2014). Blood manganese levels in relation to comorbid behavioral and emotional problems in children with attention-deficit/hyperactivity disorder. Psychiatry Research, 220(1–2), 418–425. https://doi.org/10.1016/j.psychres.2014.05.049

    Article  CAS  PubMed  Google Scholar 

  • Iyare, P. U. (2019). The effects of manganese exposure from drinking water on school-age children: A systematic review. Neurotoxicology, 73, 1–7. https://doi.org/10.1016/j.neuro.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry, 79(4), 368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692. https://doi.org/10.1016/j.envpol.2007.06.056

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., & Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death and Differentiation, 7(12), 1166–1173. https://doi.org/10.1038/sj.cdd.4400783

    Article  CAS  PubMed  Google Scholar 

  • Leyva-Illades, D., Chen, P., Zogzas, C. E., Hutchens, S., Mercado, J. M., Swaim, C. D., Morrisett, R. A., Bowman, A. B., Aschner, M., & Mukhopadhyay, S. (2014). SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. The Journal of Neuroscience, 34(42), 14079–14095. https://doi.org/10.1523/JNEUROSCI.2329-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Cha, C., Lv, X., Liu, J., He, J., Pang, Q., Meng, L., Kuang, H., & Fan, R. (2020). Association between 10 urinary heavy metal exposure and attention deficit hyperactivity disorder for children. Environmental Science and Pollution Research International, 27(25), 31233–31242. https://doi.org/10.1007/s11356-020-09421-9

    Article  CAS  PubMed  Google Scholar 

  • Lin, G., Li, X., Cheng, X., Zhao, N., & Zheng, W. (2020). Manganese exposure aggravates beta-amyloid pathology by microglial activation. Frontiers in Aging Neuroscience, 12, 556008. https://doi.org/10.3389/fnagi.2020.556008

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Yan, D. Y., Wang, C., Ma, Z., Deng, Y., Liu, W., & Xu, B. (2020). IRE1 signaling pathway mediates protective autophagic response against manganese-induced neuronal apoptosis in vivo and in vitro. Science of the Total Environment, 712, 136480. https://doi.org/10.1016/j.scitotenv.2019.136480

    Article  CAS  Google Scholar 

  • Ljung, K., & Vahter, M. (2007). Time to re-evaluate the guideline value for manganese in drinking water? Environmental Health Perspectives, 115(11), 1533–1538. https://doi.org/10.1289/ehp.10316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucchini, R. G., Albini, E., Benedetti, L., Borghesi, S., Coccaglio, R., Malara, E. C., Parrinello, G., Garattini, S., Resola, S., & Alessio, L. (2007). High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. American Journal of Industrial Medicine, 50(11), 788–800. https://doi.org/10.1002/ajim.20494

    Article  CAS  PubMed  Google Scholar 

  • Lynam, D. R., Roos, J. W., Pfeifer, G. D., Fort, B. F., & Pullin, T. G. (1999). Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology, 20(2–3), 145–150.

    CAS  PubMed  Google Scholar 

  • Ma, Z., Wang, C., Liu, C., Yan, D. Y., Deng, Y., Liu, W., Yang, T. Y., Xu, Z. F., & Xu, B. (2017). The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells. Environmental Toxicology, 32(12), 2428–2439. https://doi.org/10.1002/tox.22457

    Article  CAS  PubMed  Google Scholar 

  • Malecki, E. A. (2001). Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Research Bulletin, 55(2), 225–228. https://doi.org/10.1016/s0361-9230(01)00456-7

    Article  CAS  PubMed  Google Scholar 

  • Marti-Sanchez, L., Ortigoza-Escobar, J. D., Darling, A., Villaronga, M., Baide, H., Molero-Luis, M., Batllori, M., Vanegas, M. I., Muchart, J., Aquino, L., Artuch, R., Macaya, A., Kurian, M. A., & Duenas, P. (2018). Hypermanganesemia due to mutations in SLC39A14: Further insights into Mn deposition in the central nervous system. Orphanet Journal of Rare Diseases, 13(1), 28. https://doi.org/10.1186/s13023-018-0758-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergler, D., Huel, G., Bowler, R., Iregren, A., Belanger, S., Baldwin, M., Tardif, R., Smargiassi, A., & Martin, L. (1994). Nervous system dysfunction among workers with long-term exposure to manganese. Environmental Research, 64(2), 151–180. https://doi.org/10.1006/enrs.1994.1013

    Article  CAS  PubMed  Google Scholar 

  • Milatovic, D., Yin, Z., Gupta, R. C., Sidoryk, M., Albrecht, J., Aschner, J. L., & Aschner, M. (2007). Manganese induces oxidative impairment in cultured rat astrocytes. Toxicological Sciences, 98(1), 198–205. https://doi.org/10.1093/toxsci/kfm095

    Article  CAS  PubMed  Google Scholar 

  • Morello, M., Canini, A., Mattioli, P., Sorge, R. P., Alimonti, A., Bocca, B., Forte, G., Martorana, A., Bernardi, G., & Sancesario, G. (2008). Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats: An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology, 29(1), 60–72. https://doi.org/10.1016/j.neuro.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, S., & Linstedt, A. D. (2011). Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 858–863. https://doi.org/10.1073/pnas.1013642108

    Article  PubMed  Google Scholar 

  • Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., Cookson, M. R., & Youle, R. J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology, 8(1), e1000298. https://doi.org/10.1371/journal.pbio.1000298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newland, M. C., & Weiss, B. (1992). Persistent effects of manganese on effortful responding and their relationship to manganese accumulation in the primate globus pallidus. Toxicology and Applied Pharmacology, 113(1), 87–97.

    Article  CAS  Google Scholar 

  • Nong, A., Teeguarden, J. G., Clewell, H. J., 3rd, Dorman, D. C., & Andersen, M. E. (2008). Pharmacokinetic modeling of manganese in the rat IV: Assessing factors that contribute to brain accumulation during inhalation exposure. Journal of Toxicology and Environmental Health. Part A, 71(7), 413–426. https://doi.org/10.1080/15287390701838697

    Article  CAS  PubMed  Google Scholar 

  • Ono, J., Harada, K., Kodaka, R., Sakurai, K., Tajiri, H., Takagi, Y., Nagai, T., Harada, T., Nihei, A., Okada, A., et al. (1995). Manganese deposition in the brain during long-term total parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition, 19(4), 310–312.

    Article  CAS  Google Scholar 

  • Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. Neurotoxicology, 20(2–3), 227–238.

    CAS  PubMed  Google Scholar 

  • Peneder, T. M., Scholze, P., Berger, M. L., Reither, H., Heinze, G., Bertl, J., Bauer, J., Richfield, E. K., Hornykiewicz, O., & Pifl, C. (2011). Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience, 180, 280–292. https://doi.org/10.1016/j.neuroscience.2011.02.017

    Article  CAS  PubMed  Google Scholar 

  • Peres, T. V., Arantes, L. P., Miah, M. R., Bornhorst, J., Schwerdtle, T., Bowman, A. B., Leal, R. B., & Aschner, M. (2018). Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in manganese toxicity. Neurotoxicity Research, 34(3), 584–596. https://doi.org/10.1007/s12640-018-9915-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66(8), 675–682. https://doi.org/10.1097/nen.0b013e31812503cf

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran, K., Chapman, G. D., & Gunasekar, P. G. (2011). Alpha-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-kappa B-mediated pathway. Toxicology Mechanisms and Methods, 21(6), 435–443. https://doi.org/10.3109/15376516.2011.560210

    Article  CAS  PubMed  Google Scholar 

  • Quadri, M., Federico, A., Zhao, T., Breedveld, G. J., Battisti, C., Delnooz, C., Severijnen, L. A., Di Toro, M. L., Mignarri, A., Monti, L., Sanna, A., Lu, P., Punzo, F., Cossu, G., Willemsen, R., Rasi, F., Oostra, B. A., van de Warrenburg, B. P., & Bonifati, V. (2012). Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. American Journal of Human Genetics, 90(3), 467–477. https://doi.org/10.1016/j.ajhg.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley, L. G., Cowley, M. J., Gayevskiy, V., Roscioli, T., Thorburn, D. R., Prelog, K., Bahlo, M., Sue, C. M., Balasubramaniam, S., & Christodoulou, J. (2017). A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. Journal of Inherited Metabolic Disease, 40(2), 261–269. https://doi.org/10.1007/s10545-016-0010-6

    Article  CAS  PubMed  Google Scholar 

  • Roth, J. A. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, 39(1), 45–57. https://doi.org/10.4067/s0716-97602006000100006

    Article  CAS  PubMed  Google Scholar 

  • Roth, J. A. (2009). Are there common biochemical and molecular mechanisms controlling manganism and parkinsonism. Neuromolecular Medicine, 11(4), 281–296. https://doi.org/10.1007/s12017-009-8088-8

    Article  CAS  PubMed  Google Scholar 

  • Salazar, J., Mena, N., Hunot, S., Prigent, A., Alvarez-Fischer, D., Arredondo, M., Duyckaerts, C., Sazdovitch, V., Zhao, L., Garrick, L. M., Nunez, M. T., Garrick, M. D., Raisman-Vozari, R., & Hirsch, E. C. (2008). Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18578–18583. https://doi.org/10.1073/pnas.0804373105

    Article  PubMed  PubMed Central  Google Scholar 

  • Santamaria, A. B., Cushing, C. A., Antonini, J. M., Finley, B. L., & Mowat, F. S. (2007). State-of-the-science review: Does manganese exposure during welding pose a neurological risk? Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 10(6), 417–465. https://doi.org/10.1080/15287390600975004

    Article  CAS  PubMed  Google Scholar 

  • Schneider, J. S., Decamp, E., Koser, A. J., Fritz, S., Gonczi, H., Syversen, T., & Guilarte, T. R. (2006). Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Research, 1118(1), 222–231. https://doi.org/10.1016/j.brainres.2006.08.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth, P. K., & Chandra, S. V. (1984). Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology, 5(1), 67–76.

    CAS  PubMed  Google Scholar 

  • Settivari, R., Levora, J., & Nass, R. (2009). The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and Parkinson disease. The Journal of Biological Chemistry, 284(51), 35758–35768. https://doi.org/10.1074/jbc.M109.051409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikk, K., Haldre, S., Aquilonius, S. M., & Taba, P. (2011). Manganese-induced parkinsonism due to Ephedrone abuse. Parkinsons Disease, 2011, 865319. https://doi.org/10.4061/2011/865319

    Article  CAS  Google Scholar 

  • Skalny, A. V., Mazaletskaya, A. L., Ajsuvakova, O. P., Bjorklund, G., Skalnaya, M. G., Notova, S. V., Chernova, L. N., Skalny, A. A., Burtseva, T. I., & Tinkov, A. A. (2020). Hair trace element concentrations in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Journal of Trace Elements in Medicine and Biology, 61, 126539. https://doi.org/10.1016/j.jtemb.2020.126539

    Article  CAS  PubMed  Google Scholar 

  • Sriram, K., Lin, G. X., Jefferson, A. M., Roberts, J. R., Wirth, O., Hayashi, Y., Krajnak, K. M., Soukup, J. M., Ghio, A. J., Reynolds, S. H., Castranova, V., Munson, A. E., & Antonini, J. M. (2010). Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. The FASEB Journal, 24(12), 4989–5002. https://doi.org/10.1096/fj.10-163964

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, R. A., & Jain, J. C. (2002). Scavenger receptor class B type I expression and elemental analysis in cerebellum and parietal cortex regions of the Alzheimer’s disease brain. Journal of the Neurological Sciences, 196(1–2), 45–52. https://doi.org/10.1016/s0022-510x(02)00026-6

    Article  CAS  PubMed  Google Scholar 

  • Stastny, D., Vogel, R. S., & Picciano, M. F. (1984). Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. The American Journal of Clinical Nutrition, 39(6), 872–878.

    Article  CAS  Google Scholar 

  • Takeda, A., Sawashita, J., & Okada, S. (1995). Biological half-lives of zinc and manganese in rat brain. Brain Research, 695(1), 53–58.

    Article  CAS  Google Scholar 

  • Tinkov, A. A., Mazaletskaya, A. L., Ajsuvakova, O. P., Bjorklund, G., Huang, P. T., Chernova, L. N., Skalny, A. A., & Skalny, A. V. (2020). ICP-MS assessment of hair essential trace elements and minerals in Russian preschool and primary school children with attention-deficit/hyperactivity disorder (ADHD). Biological Trace Element Research, 196(2), 400–409. https://doi.org/10.1007/s12011-019-01947-5

    Article  CAS  PubMed  Google Scholar 

  • Tong, M., Dong, M., & de la Monte, S. M. (2009). Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with Lewy bodies: Potential role of manganese neurotoxicity. Journal of Alzheimer’s Disease, 16(3), 585–599. https://doi.org/10.3233/JAD-2009-0995

    Article  CAS  PubMed  Google Scholar 

  • Tong, Y., Yang, H., Tian, X., Wang, H., Zhou, T., Zhang, S., Yu, J., Zhang, T., Fan, D., Guo, X., Tabira, T., Kong, F., Chen, Z., Xiao, W., & Chui, D. (2014). High manganese, a risk for Alzheimer’s disease: High manganese induces amyloid-beta related cognitive impairment. Journal of Alzheimer’s Disease, 42(3), 865–878. https://doi.org/10.3233/JAD-140534

    Article  CAS  PubMed  Google Scholar 

  • Tuschl, K., Mills, P. B., Parsons, H., Malone, M., Fowler, D., Bitner-Glindzicz, M., & Clayton, P. T. (2008). Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia – A new metabolic disorder. Journal of Inherited Metabolic Disease, 31(2), 151–163. https://doi.org/10.1007/s10545-008-0813-1

    Article  CAS  PubMed  Google Scholar 

  • Tuschl, K., Clayton, P. T., Gospe, S. M., Jr., Gulab, S., Ibrahim, S., Singhi, P., Aulakh, R., Ribeiro, R. T., Barsottini, O. G., Zaki, M. S., Del Rosario, M. L., Dyack, S., Price, V., Rideout, A., Gordon, K., Wevers, R. A., Chong, W. K., & Mills, P. B. (2012). Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. American Journal of Human Genetics, 90(3), 457–466. https://doi.org/10.1016/j.ajhg.2012.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuschl, K., Meyer, E., Valdivia, L. E., Zhao, N., Dadswell, C., Abdul-Sada, A., Hung, C. Y., Simpson, M. A., Chong, W. K., Jacques, T. S., Woltjer, R. L., Eaton, S., Gregory, A., Sanford, L., Kara, E., Houlden, H., Cuno, S. M., Prokisch, H., Valletta, L., Tiranti, V., Younis, R., Maher, E. R., Spencer, J., Straatman-Iwanowska, A., Gissen, P., Selim, L. A., Pintos-Morell, G., Coroleu-Lletget, W., Mohammad, S. S., Yoganathan, S., Dale, R. C., Thomas, M., Rihel, J., Bodamer, O. A., Enns, C. A., Hayflick, S. J., Clayton, P. T., Mills, P. B., Kurian, M. A., & Wilson, S. W. (2016). Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nature Communications, 7, 11601. https://doi.org/10.1038/ncomms11601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmer, T. S., & Bax, A. (2005). Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. The Journal of Biological Chemistry, 280(52), 43179–43187. https://doi.org/10.1074/jbc.M507624200

    Article  CAS  PubMed  Google Scholar 

  • Van Swinderen, B., & Andretic, R. (2011). Dopamine in Drosophila: Setting arousal thresholds in a miniature brain. Proceedings of the Biological Sciences, 278(1707), 906–913. https://doi.org/10.1098/rspb.2010.2564

    Article  Google Scholar 

  • von Campenhausen, S., Bornschein, B., Wick, R., Botzel, K., Sampaio, C., Poewe, W., Oertel, W., Siebert, U., Berger, K., & Dodel, R. (2005). Prevalence and incidence of Parkinson’s disease in Europe. European Neuropsychopharmacology, 15(4), 473–490. https://doi.org/10.1016/j.euroneuro.2005.04.007

    Article  CAS  Google Scholar 

  • Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., LoIacono, N. J., Cheng, Z., Zheng, Y., & Graziano, J. H. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114(1), 124–129.

    Article  CAS  Google Scholar 

  • Weissenborn, K., Ehrenheim, C., Hori, A., Kubicka, S., & Manns, M. P. (1995). Pallidal lesions in patients with liver cirrhosis: Clinical and MRI evaluation. Metabolic Brain Disease, 10(3), 219–231.

    Article  CAS  Google Scholar 

  • Winslow, J. W. W., Limesand, K. H., & Zhao, N. (2020). The functions of ZIP8, ZIP14, and ZnT10 in the regulation of systemic manganese homeostasis. International Journal of Molecular Sciences, 21(9), 3304. https://doi.org/10.3390/ijms21093304

    Article  CAS  PubMed Central  Google Scholar 

  • Yan, D. Y., & Xu, B. (2020). The role of autophagy in manganese-induced neurotoxicity. Frontiers in Neuroscience, 14, 574750. https://doi.org/10.3389/fnins.2020.574750

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, D., Ma, Z., Liu, C., Wang, C., Deng, Y., Liu, W., & Xu, B. (2019). Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells. Food and Chemical Toxicology, 124, 336–348. https://doi.org/10.1016/j.fct.2018.12.027

    Article  CAS  PubMed  Google Scholar 

  • Yin, Z., Aschner, J. L., dos Santos, A. P., & Aschner, M. (2008). Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Research, 1203, 1–11. https://doi.org/10.1016/j.brainres.2008.01.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Z., Jiang, H., Lee, E. S., Ni, M., Erikson, K. M., Milatovic, D., Bowman, A. B., & Aschner, M. (2010). Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry, 112(5), 1190–1198. https://doi.org/10.1111/j.1471-4159.2009.06534.x

    Article  CAS  PubMed  Google Scholar 

  • Zaki, M. S., Issa, M. Y., Elbendary, H. M., El-Karaksy, H., Hosny, H., Ghobrial, C., El Safty, A., El-Hennawy, A., Oraby, A., Selim, L., & Abdel-Hamid, M. S. (2018). Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel SLC30A10 mutations and further phenotype delineation. Clinical Genetics, 93(4), 905–912. https://doi.org/10.1111/cge.13184

    Article  CAS  PubMed  Google Scholar 

  • Zayed, J., Thibault, C., Gareau, L., & Kennedy, G. (1999). Airborne manganese particulates and methylcyclopentadienyl manganese tricarbonyl (MMT) at selected outdoor sites in Montreal. Neurotoxicology, 20(2–3), 151–157.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Fu, J., & Zhou, Z. (2004). In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicology In Vitro, 18(1), 71–77. https://doi.org/10.1016/j.tiv.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Cao, R., Cai, T., Aschner, M., Zhao, F., Yao, T., Chen, Y., Cao, Z., Luo, W., & Chen, J. (2013). The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotoxicity Research, 24(4), 478–490. https://doi.org/10.1007/s12640-013-9392-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Yan, J., Bowman, A. B., Bryan, M. R., Singh, R., & Aschner, M. (2020). Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy, 16(8), 1506–1523. https://doi.org/10.1080/15548627.2019.1688488

    Article  CAS  PubMed  Google Scholar 

  • Zlotkin, S. H., Atkinson, S., & Lockitch, G. (1995). Trace elements in nutrition for premature infants. Clinics in Perinatology, 22(1), 223–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the funding grants NIH R01ES07331 and R01ES10563 (MA, ABB), INCT-EN, CAPES, CNPq, and FAPERGS (DSA and JBTR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ávila, D.S. et al. (2021). Manganese Neurotoxicity. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Keywords

Publish with us

Policies and ethics









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://link.springer.com/10.1007/978-3-030-71519-9_3-1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy