Content-Length: 922111 | pFad | https://doi.org/10.1017/S1351324911000210
AMIC server: cloudflarePublished online by Cambridge University Press: 11 July 2011
Automatic determination of synonyms and/or semantically related words has various applications in Natural Language Processing. Two mainstream paradigms to date, lexicon-based and distributional approaches, both exhibit pros and cons with regard to coverage, complexity, and quality. In this paper, we propose three novel methods—two rule-based methods and one machine learning approach—to identify synonyms from definition texts in a machine-readable dictionary. Extracted synonyms are evaluated in two extrinsic experiments and one intrinsic experiment. Evaluation results show that our pattern-based approach achieves best performance in one of the experiments and satisfactory results in the other, comparable to corpus-based state-of-the-art results.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.
Fetched URL: https://doi.org/10.1017/S1351324911000210
Alternative Proxies: