Preprint under review for ESurf(discussion: final response, 4 comments)
Short summary
Short summary
The shape of a river influences flow and therefore how much sediment is transported. Directly measuring sediment transport is challenging at the catchment-scale but numerical modelling can enable the prediction of sediment erosion and transport. We use flow model to map patterns of bedload transport rates to reveal patterns associated with different river patterns (i.e. meandering, wandering, braided and deltaic). We show spatial variability in bedload transport is a function of channel pattern.
We propose a new mechanism of co-seismic sediment entrainment induced by shear stress at the sediment–water interface during major subduction earthquakes rupturing to the trench. Physical experiments show that flow velocities consistent with long-period earthquake motions can entrain synthetic marine sediment, and high-frequency vertical shaking can enhance this mobilization. They validate the proposed entrainment mechanism, which opens new avenues for paleoseismology in deep-sea environments.
This research letter presents a conceptual model and data from physical experiments for a new mechanism of sediment entrainment on the seafloor during the huge co-seismic motion imposed by the large subduction earthquakes. This new mechanism introduces the concept of sediment entrainment being due to the motion of the sediment bed instead caused my movement of the water above. Furthermore, by identifying the sedimentary fingerprint of megathrust ruptures with high tsunamigenic potential, the authors propose a new approach to constraining the seismic and tsunami hazard in subduction zones.